Attività	PRINCIPI DI INGEGNERIA BIOCHIMICA
formativa	
Modulo	
didattico	
CFU	6
Ore	48
tipo	Lezioni frontali
Obiettivo	Al termine del corso lo studente conosce gli elementi fondamentali dei fenomeni fisici, chimici e biochimici che determinano
formativo	il comportamento degli apparati industriali di maggior interesse in campo biotecnologico, ed è quindi in grado di effettuare una analisi quantitativa dei processi dell'industria biotecnologica, sviluppando così capacità di interagire con le altre figure professionali coinvolte nella realizzazione e nella conduzione di processi industriali. In particolare, lo studente i) è in grado di comprendere uno schema di processo di produzione di un prodotto biotecnologico, ii) sa eseguire bilanci di materia ed energia per sistemi multicomponenti in singole apparecchiature e in sistemi complessi, iii) sa comprendere i fenomeni di trasporto coinvolti nel processo.

TEMATICA				LEZIONI		
Tema	Obiettivo	Ore		Argomenti	Durata (ore)	
Introduzione	Illustrare l'organizzazione del corso e le modalità di verifica, i suoi obiettivi, gli argomenti trattati.	2	1	Contenuti e finalità del corso, organizzazione, materiale didattico. Caratteristiche dei processi biotecnologici industriali. Processi continui e discontinui.	2	
Richiami di matematica	Richiamare i concetti fondamentali di analisi matematica essenziali allo svolgimento del programma del corso	4	2	Concetti di funzione, limite,derivata, integrale definito e indefinito.	2	
			3	Equazioni differenziali a variabili separabili, esempi, metodi numerici di integrazione, funzioni di più variabili, derivate parziali	2	
Meccanica dei fluidi	Conoscenza delle leggi fondamentali della fluidodinamica e delle relative grandezze fisiche	6	4	Sforzi normali e sforzi di taglio, fluidostatica (Stevino, Archimede,). Legge di Newton, viscosità, fluidi non Newtoniani (cenno), legge di Poiseuille.	2	
	<i>S</i>		5	Legge di Stokes, sedimentazione e centrifugazione, moto turbolento, fattore d'attrito, perdite localizzato, moto all'esterno di oggetti	2	
			6	Teorema di Bernouilli, effetto Venturi, tubo di Pitot, bilancio di energia meccanica per fluidi reali, prevalenza di una pompa, cenno a pompe volumetriche	2	
Bilanci di materia	L'allievo apprende le modalità di esecuzione dei bilanci di materia in sistemi continui e discontinui, reagenti e non reagenti, familiarizzandosi con le variabili di composizione.	12	7	Concetti generali ed esempi, variabili di composizione, esercizi	2	
			8	bilanci di materia per l'ultrafiltrazione e la diafiltrazione. Equilibrio fra fasi, definizione del fattore di partizione, legge di Henry, isoterma di Lamgmuir	2	
		Ì	9	Stadi di equilibrio, esercizi su estrazione L-L, ed assorbimento G-L.	2	
			10	Bilanci di materia in sistemi reagenti, definizione di velocità di reazione, equazioni cinetiche semplici, dipendenza dalla temperatura	2	
			11	Reattori continui, modelli fluidodinamici, (CSTR e PFR), batterie di tini, calcolo del tempo di permanenza.	2	
			12	Reazioni in parallelo e in serie in batch e in CSTR, reazioni enzimatiche, enzimi intrappolati. Chemostato: determinazione del punto di funzionamento e wash out	2	
Trasporto di materia	L'allievo apprende a descrivere lo scambio di materia fra fasi basato sui coefficienti di trasporto ed il concetto di additività delle resistenze.	6	13	Definizione di coefficienti globali e coefficienti di fase, additività delle resistenze, resistenza controllante, trasporto di ossigeno nei bioreattori, il kLa.	2	
			14	Metodi di misura del kLa in bioreattori agitati. Trasporto di materia con reazione chimica (trasporto esterno).	2	
			15	Bilanci di materia in mescolatore continuo e discontinuo e in una corrente monodimensionale in presenza di trasporto di materia. Bilancio su una particella.	2	
La Diffusione	L'allievo apprende l'impostazione dei problemi di trasporto basata sulla legge di Fick e le equazioni di bilancio locale, conosce le soluzioni classiche e il loro uso nelle applicazioni.	10	16	Trasporto diffusivo e convettivo, legge di Fick, coefficiente di diffusione, valori di D in gas, liquidi, soluzioni di proteine, materiali polimerici.	2	

		17	Misura del coefficiente di diffusione (cella di diffusione), previsione di D in gas e liquidi (cenno). Problemi di diffusione in condizioni stazionarie, trasporto fra una sfera e un fluido in quiete.	2
		18	Diffusione in condizioni non stazionarie in strato piano e in sfere con concentrazioni assegnate agli estremi, condizioni al contorno di altro tipo, Numero di Biot.	2
		19	Soluzione numerica dell'equazione della diffusione (differenze finite). Diffusione in strato semi-infinito, soluzione di Boltzman, profondità di penetrazione, applicazioni.	2
		20	Trasporto di materia e reazione. Catalisi eterogenea: fattore di efficienza e modulo di Thiele per reazioni del primo ordine, influenza della geometria, enzimi immobilizzati.	2
Trasporto di calore, analogia materia- calore	L'allievo apprende a risolvere problemi di scambio termico, l'analisi dimensionale, la previsione dei coefficienti di trasporto e l'analogia fra trasporto di materia e caliore.	21	Previsione dei coefficienti di trasporto, analisi dimensionale, relazioni empiriche. Trasporto di calore per conduzione, legge di Fourier, strati compositi (resistenze in serie).	2
		22	Conduzione in pareti cilindriche, Convezione, conduzione e convezione in geometria piana, superficie alettate (cenno). Conduzione non stazionaria, analogia fra trasporto di materia e calore, correlazioni per il numero di Nusselt.	2
		23	Temperatura di bulbo umido, cenno a torri di raffreddamento ed essiccamento, Scambiatori di calore: descrizione delle tipologie.	2
		24	Scambiatori di calore: calcolo dell'area, differenza di temperatura media logaritmica, equi e contro - corrente, sterilizzazione in discontinuo e in continuo.	2