Test for the fulfillment of the Additional Learning Requirements December 21, 2011

Fascicolo

(1) The set of solutions of the inequality $\frac{3 x-2}{x+4}>1$ is:
$\mathrm{A} \quad]-\infty,-4[\cup] 3,+\infty[$
B $]-\infty,-1[$
C $]-\infty,-4$ [
D $] 3,+\infty$ [
E $] 1,+\infty$ [
(2) Which of the following statements is true for each $a, b \in \mathbf{R}$?

A $\sqrt{a^{2} b^{2}}=\sqrt{a^{2}} \sqrt{b^{2}}$
B $\quad \sqrt{a^{2} b^{2}}=a b$
C $\sqrt{a^{2}+b^{2}}=\sqrt{a^{2}}+\sqrt{b^{2}}$
D $\sqrt{a^{2} b^{2}}=\sqrt{a b} \sqrt{a b}$
$\mathrm{E} \quad \sqrt{a^{2}+b^{2}}=\sqrt{a b}+\sqrt{a b}$
(3) Which of the following properties is valid for all rhombuses, but not for all rectangles?

A The diagonals are congruent.
B The consecutive sides are perpendicular.
C The diagonals bisect.
D The diagonals are perpendicular.
E The opposite sides are parallel.
(4) If $\sin \alpha=\frac{4}{5}$ and $\frac{\pi}{2}<\alpha<\pi$, which of the following statements is true?

A $\quad \cos \alpha=\frac{3}{5}$
B $\quad \cos \alpha=-\frac{3}{5}$
C $\quad \tan \alpha=\frac{4}{3}$
D $\quad \cos \alpha=-\frac{2}{5}$
E $\quad \tan \alpha=\frac{3}{4}$
(5) If $a=\sin (1)$ then:

```
A \(\quad \cos ^{2}(a)+\sin ^{2}(1)=1\)
B \(0<a<1\)
\(a<0\)
D \(\quad a\) can take on infinite values
E \(\quad a=\frac{\pi}{2}\)
```

(6) A right triangle is inscribed in a circle of radius 5 . Then necessarily:

A the height relative to the hypotenuse cannot be 5
B the perimeter of the triangle is equal to 20
C the sum of the lengths of the catheti is equal to 10
D the hypotenuse has length 10
E one cathetus has length 5
(7) The polynomial $P_{1}(x)$ has degree 8 and the polynomial $P_{2}(x)$ has degree 3 . Let $Q(x)$ be the quotient and $R(x)$ be the remainder of the division of $P_{1}(x)$ by $P_{2}(x)$. Then
A the degree of $Q(x)$ is 3 and the degree of $R(x)$ is less than 5
B the degree of $Q(x)$ is 5 and the degree of $R(x)$ is 2
C the degree of $Q(x)$ is 3 and the degree of $R(x)$ is less than or equal to 2
D the degree of $Q(x)$ is 5 and the degree of $R(x)$ is less than 3
E the degree of $Q(x)$ is less than or equal to 5 and the degree of $R(x)$ is less than or equal to 3
(8) For what value of the real parameter a the straight line of equation $(a+3) x+y-2=0$ is parallel to the straight line of equation $y=2 x-7$?

```
A \(\quad a=-4\)
B \(\quad a=0\)
C \(\quad a=-1\)
D \(\quad a=-5\)
E \(\quad a=-10\)
```

(9) Let $f(x)=\log \left(x^{2}+2 x+1\right)$. Then the natural domain of f is:

A	$[0,+\infty$ [
B	$] 0,+\infty$ [
C] $-1,+\infty$ [
D	$\mathbf{R} \backslash\{-1\}$
E	R

(10) The set of solutions of the inequality $x^{3}+9 x^{2} \leq 0$ is:

| A | $[-9,+\infty[$ |
| :--- | :--- | :--- |
| B | $]-\infty,-9] \cup\{0\}$ |
| C | $]-\infty, 0]$ |
| D | $]-\infty,-9]$ |
| E | $[0,9]$ |

(11) Consider the circumferences of equations $x^{2}+y^{2}=1$ and $(x-1)^{2}+(y-1)^{2}-4=0$; then:

A they are concentric
B they have no points in common
C they have the same radius
D they intersect in two points
E one of the two does not intersect the x-axis
(12) The set of solutions of the inequality $(x+1)\left(x^{2}+2\right)\left(x^{3}-3\right)<0$ is

A $] 1,+\infty$ [
B $]-\infty,-1[\cup] \sqrt[3]{3},+\infty[$
C $] \sqrt[3]{3},+\infty[$
D \emptyset
E $]-1, \sqrt[3]{3}[$
(13) Let $f: \mathbf{R} \rightarrow \mathbf{R}, f(x)=5^{x}$. Then $f(\alpha+1)-f(\alpha)$ is equal to:

(14) The equation of the straight line parallel to the straight line of equation $x=y$ and passing through the point $(-1,-4)$ is:

A	$4 x-y=0$
B	$x-y+3=0$
B	$4 x-y+3=0$
D	$x+y+5=0$
E	$x-y-3=0$

(15) If x and y are real numbers, what is the product of $2^{x^{2}}$ and $2^{y^{2}}$?

A $2^{2 x y}$
B $2^{x^{2}+y^{2}}$
C $2^{x^{2} y^{2}}$
D $4^{(x y)^{2}}$
E $\quad 4^{x^{2}+y^{2}}$
(16) In the field of real numbers, the equation $3 x^{4}-2 x^{2}-1=0$

A has exactly four solutions
B has exactly three solutions
C has at least four solutions
D has exactly two solutions
E has no solution
(17) Let

$$
f: \mathbf{R} \rightarrow \mathbf{R}, \quad f(x)=\frac{2 x}{x^{2}+1} .
$$

If $\alpha \in \mathbf{R}$, then $f(3 \alpha)$ is equal to
A $\frac{3 \alpha}{9 \alpha^{2}+1}$
B $\frac{6 \alpha}{9 \alpha^{2}+3}$
C $\frac{2 \alpha}{\alpha^{2}+1}$
D $\frac{6 \alpha}{9 \alpha^{2}+1}$
E $\frac{6 \alpha}{3 \alpha^{2}+1}$
(18) In a right triangle the ratio between a cathetus and the hypotenuse is $\frac{5}{13}$ and the other cathetus is long 48 cm . How long is the perimeter of the triangle?

| A | 100 cm |
| :--- | :--- | :--- |
| B | 68 cm |
| C | 115 cm |
| D | 72 cm |
| E | 120 cm |

(19) In the field of real numbers, the equation $\sqrt{x-1}=-(x-3)$

A has the solution 0
B has exactly one solution
C has no solution
D has exactly two solutions
E has exactly three solutions
(20) Consider the straight lines of equations $2 x+y-2=0$ and $3 x-y-3=0$; then

A they intersect in the point $(0,2)$
B they intersect in the point $(0,1)$
C they intersect in the point $(1,0)$
D they are parallels
E they coincide

