Test for the fulfillment of the Additional Learning Requirements December 21, 2011

Fascicolo

The set of solutions of the inequality $\frac{3x-2}{x+4} > 1$ is: (1) $]{-}\infty,-4[\,\cup\,]3,+\infty[$ А В $]-\infty, -1[$ \mathbf{C} $]-\infty, -4[$ D $]3, +\infty[$ Е $]1, +\infty[$ (2)Which of the following statements is true for each $a, b \in \mathbf{R}$? $\sqrt{a^2b^2} = \sqrt{a^2}\sqrt{b^2}$ А $\sqrt{a^2b^2} = ab$ В $\sqrt{a^2 + b^2} = \sqrt{a^2} + \sqrt{b^2}$ С $\sqrt{a^2b^2} = \sqrt{ab}\sqrt{ab}$ D

(3)Which of the following properties is valid for all rhombuses, but not for all rectangles?

А The diagonals are congruent.

 $\sqrt{a^2 + b^2} = \sqrt{ab} + \sqrt{ab}$

Е

D

Е

- В The consecutive sides are perpendicular.
- С The diagonals bisect.
 - The diagonals are perpendicular.
 - The opposite sides are parallel.

E
$$\tan \alpha$$
:

(5) If $a = \sin(1)$ then: A $\cos^2(a) + \sin^2(1) = 1$ B 0 < a < 1C a < 0D a can take on infinite values E $a = \frac{\pi}{2}$

(6) A right triangle is inscribed in a circle of radius 5. Then necessarily:

A the height relative to the hypotenuse cannot be 5

B the perimeter of the triangle is equal to 20

the sum of the lengths of the catheti is equal to 10

D the hypotenuse has length 10

one cathetus has length 5

 \mathbf{C}

Е

В

(7) The polynomial $P_1(x)$ has degree 8 and the polynomial $P_2(x)$ has degree 3. Let Q(x) be the quotient and R(x) be the remainder of the division of $P_1(x)$ by $P_2(x)$. Then

A the degree of Q(x) is 3 and the degree of R(x) is less than 5

the degree of Q(x) is 5 and the degree of R(x) is 2

C the degree of Q(x) is 3 and the degree of R(x) is less than or equal to 2

D the degree of Q(x) is 5 and the degree of R(x) is less than 3

E the degree of Q(x) is less than or equal to 5 and the degree of R(x) is less than or equal to 3

(8) For what value of the real parameter a the straight line of equation (a+3)x+y-2=0 is parallel to the straight line of equation y = 2x - 7?

 (9) Let $f(x) = \log(x^2 + 2x + 1)$. Then the natural domain of f is: A $[0, +\infty[$ B $]0, +\infty[$ C $]-1, +\infty[$ D $\mathbf{R} \setminus \{-1\}$ E \mathbf{R}

(10) The set of solutions of the inequality $x^3 + 9x^2 \le 0$ is:

 $\begin{array}{c|c}
A & [-9, +\infty[\\
B &]-\infty, -9] \cup \{0\} \\
\hline C &]-\infty, 0] \\
\hline D &]-\infty, -9]
\end{array}$

Е

(11) Consider the circumferences of equations $x^2 + y^2 = 1$ and $(x-1)^2 + (y-1)^2 - 4 = 0$; then: A they are concentric B they have no points in common C they have the same radius

D they intersect in two points

one of the two does not intersect the x-axis

(12) The set of solutions of the inequality $(x + 1)(x^2 + 2)(x^3 - 3) < 0$ is A $]1, +\infty[$ B $]-\infty, -1[\cup]\sqrt[3]{3}, +\infty[$ C $]\sqrt[3]{3}, +\infty[$ D \emptyset E $]-1, \sqrt[3]{3}[$ (13) Let $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 5^x$. Then $f(\alpha + 1) - f(\alpha)$ is equal to: A $4 \cdot 5^{\alpha}$ B 5C $5 \cdot 5^{\alpha}$ D 5^{α} E 1

(14) The equation of the straight line parallel to the straight line of equation x = y and passing through the point (-1, -4) is:

 $\begin{array}{c|c}
A & 4x - y = 0 \\
\hline B & x - y + 3 = 0 \\
\hline C & 4x - y + 3 = 0 \\
\hline D & x + y + 5 = 0 \\
\hline E & x - y - 3 = 0 \\
\end{array}$

(15) If x and y are real numbers, what is the product of 2^{x^2} and 2^{y^2} ?

 $\begin{array}{c|c}
A & 2^{2xy} \\
\hline B & 2^{x^2 + y^2} \\
\hline C & 2^{x^2 y^2} \\
\hline D & 4^{(xy)^2} \\
\hline E & 4^{x^2 + y^2}
\end{array}$

А

В

Е

(16) In the field of real numbers, the equation $3x^4 - 2x^2 - 1 = 0$

has exactly four solutions

has exactly three solutions

C has at least four solutions

D has exactly two solutions

has no solution

(17) Let

$$f: \mathbf{R} \to \mathbf{R}, \qquad f(x) = \frac{2x}{x^2 + 1}.$$

If $\alpha \in \mathbf{R}$, then $f(3\alpha)$ is equal to

Α	$\frac{3\alpha}{9\alpha^2 + 1}$
В	$\frac{6\alpha}{9\alpha^2+3}$
С	$\frac{2\alpha}{\alpha^2+1}$
D	$\frac{6\alpha}{9\alpha^2+1}$
Е	$\frac{6\alpha}{3\alpha^2+1}$

(18) In a right triangle the ratio between a cathetus and the hypotenuse is $\frac{5}{13}$ and the other cathetus is long 48 cm. How long is the perimeter of the triangle?

 A
 100 cm

 B
 68 cm

 C
 115 cm

 D
 72 cm

 E
 120 cm

(19) In the field of real numbers, the equation $\sqrt{x-1} = -(x-3)$

Α	has the solution	0	
---	------------------	---	--

- B has exactly one solution
- C has no solution
- D has exactly two solutions
- E has exactly three solutions

(20) Consider the straight lines of equations 2x + y - 2 = 0 and 3x - y - 3 = 0; then

- A they intersect in the point (0,2)
- B they intersect in the point (0,1)
 - they intersect in the point (1,0)
 - they are parallels
 - they coincide

 \mathbf{C}

D

Е