

Introductory Guide to Python

Master’s Degree in Mechanical Engineering for Sustainability

didatticaforli.ingstudenti@unibo.it

mailto:didatticaforli.ingstudenti@unibo.it

2

Table of Contents

1. Introduction .. 3

2. Installation Guide... 4

2.1. Anaconda Distribution.. 4

2.2. Python and pip (Advanced Users) ... 6

2.3. Introduction to Python Environments .. 6

2.4. Python versions ... 7

2.5. Managing Python Environments ... 7

2.6. Setting up an IDE ... 8

2.6.1. JupyterLab ... 9

2.6.2. Visual Studio Code ...11

2.6.3. PyCharm ..11

3. Coding in Python...11

3.1. Creating your first script...11

3.2. Help and Documentation ...13

3.3. Modules..14

3.4. Functions, Classes, Objects ...15

3.5. Python Scripts and Notebooks ..15

3.6. Useful Modules ..16

4. Code Examples ..17

4.1. Coding Fundamentals ...19

4.2. Data Importing ...19

4.3. Data Processing and Applications ...19

4.4. Data Export and Visualization ...20

4.5. Good to Know ..20

5. Where to go from here… ...20

Additional Resources ...20

3

1. Introduction
Python is a high-level, interpreted programming language that has garnered significant
popularity in the software development community since its inception by Guido van Rossum in
1991. Python emphasizes code readability and simplicity. Van Rossum designed Python to be
an easy-to-read language that encourages program modularity and code reuse. Its higher
simplicity than other programming language makes it easy to start programming. Python is a
versatile language used in various fields and for a wide range of applications, from data science
and artificial intelligence to to scientific computing and automation of procedures. Python's
popularity has grown significantly over the years, becoming one of the most widely used
programming languages in the world. Several factors contribute to its widespread adoption, like
compatibility with different operating systems, clear and straightforward syntax, and extensive
community and support, making it an easy-to-learn programming language with a rich
ecosystem and a vast range of applications.

This introductory guide aims to provide users the foundational knowledge needed to approach
coding using python, guiding them from installing the required software to describing the
fundamental syntax and required steps to setup a working Python installation. Finally,
guidelines on how to continue learning are presented to render users autonomous in their
learning journey. If you’re unsure if Python is the right tool for you, you can check the General
Python FAQ1 webpage.

1 https://docs.python.org/3/faq/general.html

FFT.ipynb
https://docs.python.org/3/faq/general.html
https://docs.python.org/3/faq/general.html
https://docs.python.org/3/faq/general.html

4

2. Installation Guide
Installing Python is not straightforward, and the steps to do so can be different according to the
user’s preferences and familiarity with the language. Assuming advanced users need little to
no guide in installing the software, this guide will focus on novice and intermediate users.

Downloading Python from the official website is not enough to make it ready to be used: when
in use, Python is called from different environments that are created by the user, each with its
own interpreter and libraries. These environments need to be setup and managed by users.
While this can be done using the OS terminal, it is not suggested for novices. In this section we
will see how to install a Python manager which allows users to control their Python installation
using a GUI. Table 1 shows the suggested installation method for users according to their
expertise with Python and/or the command prompt.

Novice Users Intermediate Users Advanced Users

Anaconda Distribution2 Python Interpreter3

Table 1: Suggested installation method for different users.

2.1. Anaconda Distribution
The suggested approach for novices is to install Anaconda. The Anaconda Distribution is a
popular, open-source distribution of the Python and R programming languages for scientific
computing, data science, and machine learning. It simplifies package management and
deployment by providing a platform that includes a wide range of pre-installed packages and
tools. This means that installing Anaconda gives the user access to tools to manage their
Python installation and an integrated development environment (IDE) through a GUI. Managing
Python with Anaconda is strongly suggested for new users and those who are not familiar with
pip and terminal commands. The Anaconda individual distribution can be downloaded from
the Download Page. Anaconda is based on the conda package to install and manage Python
environments, and it can be considered as the GUI to access conda functionalities in a n user-
friendly way. The Anaconda distribution is available for Windows, Mac, or Linux OS.

2 https://www.anaconda.com/download/success
3 https://www.python.org/downloads/

https://www.anaconda.com/download/success
https://www.python.org/downloads/
https://www.anaconda.com/download/success
https://www.anaconda.com/download/success
https://www.python.org/downloads/

5

Figure 1: Anaconda Distribution Installers from the download page.

To install the Anaconda Distribution, it is recommended to follow the on-screen instructions of
the installer. If in doubt, follow the Official Documentation4. Once the installation is complete,
Anaconda can be launched through the Anaconda Navigator executable. The Navigator allows
users to have full control of their Python installation and virtual environments. The Getting
Started Documentation5 on how to work with the Navigator is available online.

Figure 2: Anaconda Navigator User Interface.

4 https://docs.anaconda.com/anaconda/install/
5 https://docs.anaconda.com/navigator/getting-started/

https://www.anaconda.com/download/success
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/navigator/getting-started/
https://docs.anaconda.com/navigator/getting-started/
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/navigator/getting-started/

6

2.2. Python and pip (Advanced Users)
This section is for users who want more flexibility and are confident in using the terminal.
Instead of installing Anaconda, it is possible to simply download Python from the official
website6. This installation is much quicker than downloading and installing Anaconda, but
comes with no user interface. When installing Python this way, users must use the OS terminal
to interact with it and manage their installation. In particular, managing the Python installation
requires working with pip7 and terminal commands. As reference, if using Python and pip
without anaconda, there’s plenty of online tutorials on how to manage virtual environments8
and packages9 10.

2.3. Introduction to Python Environments
While understanding Python Environments is not required for installing Python, knowing what
they are is crucial to discern between pros and cons of different installation solutions. An
environment consists in the combination of an interpreter that is called when running code,
and the third-party libraries and packages installed in the environment. The virtual
environments can be activated (only one at a time) and used when coding. This means that the
environments are separated and can not communicate. Different versions of libraries can be
installed in one or the other, ensuring legacy code can still work correctly while new projects
can be based on the newest version of libraries.

Figure 3: Virtual environments example, with each having a different Python version and
different libraries11.

6 https://www.python.org/downloads/
7 https://packaging.python.org/en/latest/tutorials/installing-packages/
8 https://gist.github.com/ryanbehdad/858b47b54be441a684efb7ae6ca98a75
9 https://pip.pypa.io/en/stable/cli/
10 https://pkgui.com/pip-cheat-sheet
11 https://www.dataquest.io/blog/a-complete-guide-to-python-virtual-environments/

https://www.python.org/downloads/
https://www.python.org/downloads/
https://packaging.python.org/en/latest/tutorials/installing-packages/
https://gist.github.com/ryanbehdad/858b47b54be441a684efb7ae6ca98a75
https://pkgui.com/pip-cheat-sheet
https://www.python.org/downloads/
https://packaging.python.org/en/latest/tutorials/installing-packages/
https://gist.github.com/ryanbehdad/858b47b54be441a684efb7ae6ca98a75
https://pip.pypa.io/en/stable/cli/
https://pkgui.com/pip-cheat-sheet
https://www.dataquest.io/blog/a-complete-guide-to-python-virtual-environments/

7

2.4. Python versions
A quick note on Python versions: different Python versions (e.g. 2.6, 3.6, 3.12, etc…) might
require a different version of libraries or packages. This can affect how scripts run and their
stability. Therefore, it is important to always be aware of what Python version each environment
is running on. Most importantly, there are coding syntax changes between Python 2 and Python
3. It is suggested, unless otherwise required, to run scripts on the latest stable version of Python
3. The Python version can be chosen when initializing an environment and can be different
between environments.

Figure 4: Python versions and release cycle summary.

2.5. Managing Python Environments
As previously introduced, Python environments are closed ecosystems of libraries. This implies
that a script executed in Environment A will likely exhibit different behavior when run in
Environment B, as environments are isolated and different libraries may be installed in each.
Consequently, tracking and managing these environments is crucial to ensure the smooth
operation of programs. Within the Navigator, users can access conda environments through
the Environments page. The base environment serves as the default Python environment for
every conda installation. It can be kept up-to-date and cloned to facilitate the rapid creation of
new environments. Additionally, new environments can be created with the necessary Python
version and specified target folder. A comprehensive guide on how to manage environments is

8

provided in the Anaconda Documentation12. Advanced users can use commands in the
terminal to manage their Anaconda installation (Advanced environment management13). A
guide on how to manage packages is also available in the online Documentation14.

Figure 5: Environments tab of the Anaconda Navigator. Environment management commands
are highlighted in red.

2.6. Setting up an IDE
Programming in Python is as simple as launching the Anaconda Prompt and typing “python.”
However, this approach is sub-optimal, as advanced scripting benefits from visual aids and
color differentiation to assist the user in the development process.

Figure 6: The simplest way to call Python is the Anaconda Prompt, a command-based
interface that can be used to manage the Python installation and run Python commands.

12 https://docs.anaconda.com/navigator/tutorials/manage-environments/
13 https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
14 https://docs.anaconda.com/navigator/tutorials/manage-packages/

https://docs.anaconda.com/navigator/tutorials/manage-environments/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.anaconda.com/navigator/tutorials/manage-packages/
https://docs.anaconda.com/navigator/tutorials/manage-environments/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.anaconda.com/navigator/tutorials/manage-packages/

9

Once the Python interpreter is installed, any text editor can function as an Integrated
Development Environment (IDE), such as Sublime Text, Notepad++, etc., with an appropriate
color palette. The drawback of this method is the necessity to copy and paste the code into the
prompt to execute the scripts. The optimal solution is to utilize IDEs that can run scripts using
kernels—processes that operate in the background to convey information to the Python
interpreter. While these can be independently installed and linked to Python, Anaconda
simplifies the installation process.

Since environments do not communicate with each other, an IDE must be installed within each
environment where it will be used. Anaconda currently supports several IDEs, including VS
Code, JupyterLab, Notebook, and Spyder. The Anaconda documentation offers tutorials on
how to set up the various supported IDEs (IDE Tutorials)15.

2.6.1. JupyterLab

For this guide, JupyterLab will be used due to its simplicity and resemblance to other coding
environments, such as MATLAB. JupyterLab can be launched from the tiles in the Anaconda
Navigator.

Figure 7: The JupyterLab interface. This IDE provides an intuitive yet effective browser-based
solution for Python coding.

JupyterLab is a browser-based Integrated Development Environment (IDE), which operates
through a web browser such as Google Chrome. Despite this, it provides a visually intuitive

15 https://docs.anaconda.com/anaconda/getting-started/#ide-tutorials

https://docs.anaconda.com/anaconda/getting-started/#ide-tutorials
https://docs.anaconda.com/anaconda/getting-started/#ide-tutorials

10

coding experience, featuring interactive cells and real-time output display. JupyterLab allows
for the creation of Notebooks, which are files with the *.ipynb extension that contain interactive
code cells. Within these files, results and outputs are displayed directly in the coding window,
similar to MATLAB live scripts. Alternatively, simpler Python files can be created. These files
maximize code simplicity and can be read by basic text editors, though they may sacrifice some
clarity. Ultimately, the choice of format in which to code programs rests with the user.

JupyterLab is the perfect IDE for new users to create computational notebooks. A
computational notebook is a shareable document that combines computer code, plain
language descriptions, data, rich visualizations like 3D models, charts, graphs and figures, and
interactive controls. A notebook, along with an editor like JupyterLab, provides a fast interactive
environment for prototyping and explaining code, exploring and visualizing data, and sharing
ideas with others16. JupyterLab can be installed and managed through the Anaconda package.
A guide and overview of JupyterLab can be found on its official website (Get Started17, User
Guide18).

Figure 8: Jupyter Notebook example in JupyterLab.

16 https://jupyterlab.readthedocs.io/en/latest/
17 https://jupyterlab.readthedocs.io/en/latest/getting_started/overview.html
18 https://jupyterlab.readthedocs.io/en/stable/user/index.html

https://jupyterlab.readthedocs.io/en/latest/getting_started/overview.html
https://jupyterlab.readthedocs.io/en/stable/user/index.html
https://jupyterlab.readthedocs.io/en/stable/user/index.html
https://jupyterlab.readthedocs.io/en/latest/
https://jupyterlab.readthedocs.io/en/latest/getting_started/overview.html
https://jupyterlab.readthedocs.io/en/stable/user/index.html

11

2.6.2. Visual Studio Code

VS Code is one of the most commonly used Integrated Development Environments (IDEs) in
the industry. It offers a highly flexible programming experience due to its extensive library of
extensions. However, its setup process can be less intuitive compared to JupyterLab. The
Anaconda documentation provides a comprehensive tutorial on how to set up VS Code (Visual
Studio Code Tutorial19). Additionally, there are official instruction on setting up Python in VS
Code20.

2.6.3. PyCharm

PyCharm is an IDE that integrates with Anaconda and supports managing virtual environments
with conda. Similarly to VS Code, PyCharm provides a complete programming experience with
tools and instruments to support coding. To setup PyCharm with the Anaconda Distribution,
follow the official documentation21.

3. Coding in Python

3.1. Creating your first script
Here is a quick recap on what should have been done up to this point:

- Install Anaconda Navigator.
- Create a new virtual environment.
- JupyterLab (or an equivalent IDE) has been installed on the new environment.

To start JupyterLab, select its tile in the Anaconda Navigator or type jupyter-lab in the OS
terminal. The Launcher window should appear (Fig. 9) to select the kind of script to create. From
here, we can create a notebook for an interactive programming experience.

19 https://docs.anaconda.com/working-with-conda/ide-tutorials/vscode/
20 https://code.visualstudio.com/docs/languages/python
21 https://docs.anaconda.com/working-with-conda/ide-tutorials/pycharm/

https://docs.anaconda.com/working-with-conda/ide-tutorials/vscode/
https://docs.anaconda.com/working-with-conda/ide-tutorials/vscode/
https://code.visualstudio.com/docs/languages/python
https://code.visualstudio.com/docs/languages/python
https://docs.anaconda.com/working-with-conda/ide-tutorials/pycharm/
https://docs.anaconda.com/working-with-conda/ide-tutorials/vscode/
https://code.visualstudio.com/docs/languages/python
https://docs.anaconda.com/working-with-conda/ide-tutorials/pycharm/

12

Figure 9: JupyterLab start screen.

One of the most important concepts of JupyterLab is the kernel, which is the process that runs
Python and interacts with the interpreter. Changing (or restarting) the kernel inside of
JupyterLab allows the user to change the environment while coding. JupyterLab offers
documentation on Managing Kernels and Terminals22.

Figure 10: Kernel selections in JupyterLab.

22 https://jupyterlab.readthedocs.io/en/stable/user/running.html

https://jupyterlab.readthedocs.io/en/stable/user/running.html
https://jupyterlab.readthedocs.io/en/stable/user/running.html

13

The concept of working with Notebooks consists in creating and running cells, insteand of the
whole code every time. This means that by separating the importing of modules, functions, and
data from the processing, can make working easier and without repeated instructions, as well
as the code clearer.

Creating a script is straightforward. Choosing the Notebook option, a *ipynb file is created and
can be edited in the editor environment. A simple python script *.py can be created and edited
in JupyterLab, but not run directly. These files can, on the other hand, be designed as modules
to be called from an interactive script.

A new Notebook starts with an empty Code cell. This selection can be changed in the Notebook
toolbar (Code/Markdown/Raw). Markdown and Raw cells contain text and are not compiled
when running the script.

Figure 11: New Notebook interface. The empty cell is automatically set to Code and can be
run with Shift+Enter.

We can try simple commands to check if everything is working correctly.

list = [1,2,3]

var1 = list[0]

var2 = list[2]

sum = var1 + var2

print(sum)

To run the code you can click on the play icon in the toolbar (Run this cell and advance) or use
Shift+Enter. A nice cheatsheet for working with JupyterLab is available at this page23. If the
Notebook has printed “4”, everything is set up for more advanced coding.

3.2. Help and Documentation
The Python documentation is available online. This is valid for the basic Python modules and
third-party modules. In addition, Python includes a built-in help system that you can access
directly from the Python interpreter. To call the Help System, it is possible to use the command:

help()

23 https://www.edureka.co/blog/wp-content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf

https://www.edureka.co/blog/wp-content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf
https://www.edureka.co/blog/wp-content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf

14

Help can also be called on a specific function or module:

help('modules') # Lists all available modules

help(math) # Provides help on the math module

help(math.sqrt) # Provides help on the sqrt function in the math module

Or on keywords:

help('for')

help('if')

The dir() function can be used to list the attributes and methods of an object. This can be useful
to see what functions are available in a module.

import math

dir(math)

Most modules, functions, classes, and methods also have a __doc__ attribute that contains
their documentation string:

print(math.__doc__)

print(math.sqrt.__doc__)

3.3. Modules
In Python, modules are essentially files that contain Python code. They can define functions,
classes, and variables, as well as include runnable code. Modules allow you to logically
organize your Python code into manageable sections, making it easier to maintain and reuse.
Modules can be divided into:

- Built-in Modules: Python comes with a large standard library of modules that you can
use without installing anything extra. Examples include math, os, sys, and datetime.

- Third-Party Modules: These are modules developed by the Python community. You can
install them using package managers like pip. Examples include requests, numpy,
pandas, and matplotlib.

- Custom Modules: These are modules you create yourself to organize your code. For
instance, if you have a file named mymodule.py, it can be imported and used in other
Python scripts.

Modules can be imported in different ways. The most common one is using aliases to simplify
calling their content. In this example we are calling the numpy (numerical python) module with
the alias np. This means that every time we want to access a class or function of numpy, we will
have to use the dot notation to specify the module the function belongs to.

15

import numpy as np

print(np.array([1, 2, 3])) # Output: [1 2 3]

This way, there is no confusion what modules or functions are being called. Another approach
is importing only specific functions from modules, like in the following example. This approach
takes away the complexity of the dot notation.

from mymodule import myFunction

myFunction()

3.4. Functions, Classes, Objects
As the Python lexicon can be confused to new users. We will briefly introduce the most
common keywords found when reading coding tutorials and books. First of all, functions are
blocks of reusable code that perform specific tasks. These take input parameters and return
values. Differently, classes are prototypes for creating objects. Classes encapsulate data
(attributes) and behaviours (methods). Attributes are the variables that belong to a class, and
methods are the functions that belong to a class. Finally, objects are instances of classes, they
have with their own attributes and can use the methods defined by the class. Here is a trivial
example of a class, and its instancing in an object.

class Dog:

 """A simple class representing a dog."""

 def __init__(self, name, age):

 """Initialize the attributes of the dog."""

 self.name = name

 self.age = age

 def bark(self):

 """A method that makes the dog bark."""

 print(f"{self.name} says Woof!")

Creating an instance of the class

my_dog = Dog("Buddy", 3)

Accessing attributes and methods

print(my_dog.name) # Output: Buddy

print(my_dog.age) # Output: 3

my_dog.bark() # Output: Buddy says Woof!

In this case, and in general, the __init__ method is a special method called a constructor. It is
automatically called when a new instance of the class is created. It initializes the object's
attributes. And must always be defined when creating a class.

3.5. Python Scripts and Notebooks
In general, Python scripts are used to perform analyses where the output needs to be collected
in the end. While Notebooks provide a more interactive programming experience, as well as a

16

simpler way of sharing results between users. Scripts and Notebooks are generally supported
by all IDEs. Jupyter Notebooks can be tested in the web version of JupyterLite24, and the
documentation of JupyterLab25 is online.

Figure 12: Example of interactive Notebook from the official JupyterLite website.

3.6. Useful Modules
Performing calculations in Python, including array and scientific calculations, involves using
specialized libraries designed to handle complex mathematical operations efficiently. The
following points outline the primary modules used for such calculations in Python:

1. NumPy: A fundamental library for numerical computations in Python, NumPy provides
support for large, multi-dimensional arrays and matrices. It includes a wide range of
mathematical functions to perform operations on these arrays.

2. SciPy: Built on top of NumPy, SciPy is a library used for scientific and technical computing.
It includes modules for optimization, integration, interpolation, eigenvalue problems,
algebraic equations, and other advanced mathematical operations.

3. Pandas: Primarily known for data manipulation and analysis, Pandas also supports a range
of mathematical operations. It provides data structures like DataFrames, which facilitate
complex calculations on structured data.

4. SymPy: A library for symbolic mathematics, SymPy allows for algebraic manipulations,
calculus, equation solving, and other symbolic computations. It is useful for problems that
require exact solutions rather than numerical approximations.

24 https://jupyter.org/try-jupyter/lab/
25 https://jupyterlab.readthedocs.io/en/latest/

https://jupyter.org/try-jupyter/lab/
https://jupyterlab.readthedocs.io/en/latest/getting_started/overview.html
https://jupyter.org/try-jupyter/lab/
https://jupyterlab.readthedocs.io/en/latest/

17

5. Matplotlib: Although primarily a plotting library, Matplotlib also supports basic
mathematical operations and can be used in conjunction with other libraries to visualize
results of calculations.

6. Scikit-learn: A machine learning library built on NumPy, SciPy, and Matplotlib, Scikit-learn
provides tools for data mining and data analysis, including a wide range of algorithms for
classification, regression, clustering, and dimensionality reduction.

7. TensorFlow and PyTorch: Libraries for deep learning and complex neural network
calculations. They provide tools for automatic differentiation and GPU acceleration,
enabling efficient computation of large-scale models.

By leveraging these libraries, Python can handle a wide range of numerical and scientific
calculations, making it a powerful tool for both simple and complex mathematical tasks.

4. Code Examples
The following links give access to a series of Python Jupyter Notebooks created to provide
further context and examples on how to use Python. These can be opened using JupyterLab or
any program able to read Jupyter Notebooks. For an easy access, the links are provided directly
to the folder containing the Notebook. While other IDEs can open directly the files, IDEs based
on Anaconda (which has been chosen for its easy maintainability) cannot be called directly, but
need to be opened through Anaconda. This greatly facilitates the selection and management
of environments, but also requires users to manually open the IDE from the Navigator. Here is
a step-by-step guide on how to open the code examples using Anaconda. Users who have set
up their own python and environments might be able to simply click on the Notebooks in
Explorer to open them in their selected IDE.

If Anaconda/JupyterLab is installed (Default):

1) Click on the links below, this opens the folder where the Notebook is in Explorer.
2) Open the Anaconda Navigator.
3) Activate the environment you want to work on (see Fig. 13).
4) Launch JupyterLab from the Navigator.
5) In JupyterLab, navigate to the required folder in one of the following ways (see Fig. 14):

a. In the JupyterLab File Browser, navigate through the folders to the folder
containing the Notebook.

b. Under the File tab, click on “Open from Path…” and paste the path of the folder
opened at step 1.

6) In the JupyterLab File Browser, double click on the Jupyter Notebook to open it.

18

Figure 13: Anaconda Navigator interface to launch JupyterLab within a selected environment.

Figure 14: JupyterLab interface with the File tab and File Browser to open a chosen folder or
Notebook.

If a custom installation has been performed, and assuming the environment, interpreter, and
modules can be selected within the user’s IDE (Custom):

1) Click on the links below, this opens the folder where the Notebook is in Explorer.
2) Select “<filename>.ipynb”
3) Select “Open with…” and select the IDE to be used.

19

4.1. Coding Fundamentals
Python Basics

Arithmetic Operations in Python

Python Data Types

Indexing in Python

Python Arrays and Matrices

Introduction to Lambda Functions in Python

Introduction to Loops and Control Flow in Python

Introduction to Classes and Functions in Python

4.2. Data Importing
Introduction to Importing Data in Python

Importing and Reading Images in Python

Cleaning Data in Python

4.3. Data Processing and Applications
Performing Linear Least-Square Fitting

Performing Nonlinear Least-Square Fitting

Fitting and Statistical Distributions

Data Interpolation in Python

Numerical Integration in Python

Introduction to Symbolic Coding in Python

Fast-Fourier Transform in Python

Finding Roots of Functions in Python

Solving ODEs in Python

Units of Measurement in Python

Scripts/0_Python_Basics
Scripts/1_Arithmetic_in_Python
Scripts/2_Python_Data_Types
Scripts/3_Python_Indexing
Scripts/4_Python_Arrays_Matrices
Scripts/5_Lambda_Functions
Scripts/6_Loops_Control_Flow%20
Scripts/7_Functions_and_Classes%20
Scripts/8_Importing_Data
Scripts/9_Reading_Images
Scripts/10_Cleaning_Data
Scripts/11_Linear_LeastSquare%20
Scripts/12_Nonlinear_LeastSquare
Scripts/13_Distribution_Fitting
Scripts/14_Data_Interpolation
Scripts/15_Data_Integration
Scripts/16_Symbolic_Python
Scripts/17_FFT
Scripts/18_Nonlinear_Equations
Scripts/19_ODEs_Python%20
Scripts/20_Units_Python

20

4.4. Data Export and Visualization
2D Plotting in Python

3D Plotting in Python

4.5. Good to Know
Using the Documentation in Python

Parallel Computing in Python

Custom Modules in Python

Managing the Search Path in Python

5. Where to go from here…
This document provides instructions on how to first approach learning Python, from
understanding the concepts behind the language to a library of code examples to show the
language capabilities.

Novice users can rely on guided tutorials to understand better the core concepts. Microsoft26
provides free and comprehensive tutorials to learn Python. Datacamp27 also provides
interactive courses (free to a limited extent). Additionally, following along roadmaps (e.g.
Python Roadmap28) can be helpful to learn the fundamentals in the proper order.

Intermediate and autonomous users can rely on suggested books29 to learn more about using
Python in their applications. If you are already familiar with basic syntax, spending time on the
user guide of scientific libraries (e.g. SciPy30, NumPy31, Control32).

Additional Resources

Examples Library:

26 https://learn.microsoft.com/en-us/training/paths/beginner-python/
27 https://www.datacamp.com/
28 https://roadmap.sh/python
29 https://wiki.python.org/moin/IntroductoryBooks
30 https://docs.scipy.org/doc/scipy -1.14.0/tutorial/index.html#user-guide
31 https://numpy.org/doc/stable/user/
32 https://python-control.readthedocs.io/en/0.10.0/

Scripts/22_2D_Plot
Scripts/23_3D_Plot
Scripts/21_Documentation_Python%20
Scripts/24_Parallel_Python
Scripts/25_Modules_Python%20
Scripts/26_Managing_Paths
https://learn.microsoft.com/en-us/training/paths/beginner-python/
https://www.datacamp.com/
https://roadmap.sh/python
https://wiki.python.org/moin/IntroductoryBooks
https://docs.scipy.org/doc/scipy-1.14.0/tutorial/index.html#user-guide
https://numpy.org/doc/stable/user/
https://python-control.readthedocs.io/en/0.10.0/
https://learn.microsoft.com/en-us/training/paths/beginner-python/
https://www.datacamp.com/
https://roadmap.sh/python
https://wiki.python.org/moin/IntroductoryBooks
https://docs.scipy.org/doc/scipy-1.14.0/tutorial/index.html#user-guide
https://numpy.org/doc/stable/user/
https://python-control.readthedocs.io/en/0.10.0/

21

Python Code Snippets

Python Snippets

30 Days of Python

Documentation:

Scipy Documentation

NumPy Documentation

Matplotlib Documentation

Pandas Documentation

SymPy Documentation

Interactive Courses:

Datacamp

learnpython.org

Python for Beginners (Microsoft)

Guides/Courses:

Python Beginners Guide (Python)

Introductory Books (Python)

The Python Tutorial (Python)

Introduction To Computer Science And Programming In Python (MIT OpenCourseWare)

Get started with Python using Windows (Microsoft)

Anaconda Learning

Roadmaps:

Python Roadmap

PyFlo

https://code.pieces.app/collections/python
https://www.30secondsofcode.org/python/p/1/
https://github.com/Asabeneh/30-Days-Of-Python
https://docs.scipy.org/doc/scipy/
https://numpy.org/doc/2.0/
https://matplotlib.org/stable/index.html
https://pandas.pydata.org/docs/
https://docs.sympy.org/latest/index.html
https://www.datacamp.com/
https://www.learnpython.org/en/
https://learn.microsoft.com/en-us/training/paths/beginner-python/
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/IntroductoryBooks
https://docs.python.org/3/tutorial/
https://ocw.mit.edu/courses/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://learn.microsoft.com/en-us/windows/python/
https://learning.anaconda.cloud/
https://roadmap.sh/python
https://pyflo.net/

