

An overview on current methods for interplanetary trajectory optimization

Dario Izzo Scientific coordinator @ Advanced Concepts Team dario.izzo "at" esa.int

Fundamentals of interplanetary Trajectory optimisation

The Advanced Concepts Team

European Space Agency

monitor, **perform** and **foster** research on advanced space systems, innovative concepts and working methods

Fundamentals of interplanetary Trajectory optimisation

The Advanced Concepts Team

European

ency

scientific domains with weak links to space

too immature for regular ESA programmes or projects

techniques developed in basic scientific research

topics on which ESA is expected to have a position

- 1. Interplanetary Trajectories
 - a. Real Missions
 - b. The GTOC problems
- 2. Direct vs. Indirect method
 - a. The Optimal Control Problem
 - b. Pontryagin Maximum Principle (indirect methods)
 - c. Transcription Methods (direct methods)
- 3. A deeper look into direct methods
 - a. Building Blocks (Lambert, Lagrange, Mivovitch)
 - b. Chemical propulsion
 - c. Low-thrust propulsion
- 4. Web resources
- 5. Examples: asteroid deflection, human missions to asteroids

Interplanetary Trajectories a. Real Missions

Fundamentals of interplanetary Trajectory optimisation

6

Water in Enceladus?

Fundamentals of interplanetary Trajectory optimisation

Advanced Concepts Team

6

Messenger (NASA)

Fundamentals of interplanetary Trajectory optimisation

esa

100% Mercury

Fundamentals of interplanetary Trajectory optimisation

Rubble piles exist!

Fundamentals of interplanetary Trajectory optimisation

Advanced Concepts Team

Interplanetary Trajectories b. GTOC problems

Fundamentals of interplanetary Trajectory optimisation

- 1. GTOC: Global Trajectory Optimization Competition
- 2. Taking place every year (roughly)
- 3. Near-to-impossible interplanetary trajectory problem: complexity ensures a clear competition winner
- 4. Open to academia, industry and space agencies
- 5. Winners organize and define the following edition
- 6. Creating a formidable database of challenging problems and solution methods
- 7. Competition duration is, usually, one month
- The problem is rigorously defined so that solutions can be ranked with respect to a quantitative objective value
- 9. Web resources

The America's cup of rocket science

\frown		Team name	Value
	1.	Jet Propulsion Laboratory	1,850,000
	2.	Deimos Space	1,820,000
	3.	GMV	1,455,000
		Moscow Aviation Institute	1,364,000
		Politecnico di Torino	1,290,000
		CNES/CS	1,194,000
		Glasgow University	385,000
		Moscow University	351,152
		Alcatel	330,385
		DLR	330,000
		Tsinghua University	89,000

GTOC2: Multiple Asteroid Rendezvous

3			
1		Team name	Value
2			
	- 1.	Politecnico di Torino	98.64
	2.	Moscow Aviation Institute and Khrunichev State Research	87.93
	3.	Advanced Concepts Team (ESA)	87.05
~		Centre National d'Etudes Spatiales (CNES)	85.43
1		GMV Aerospace and Defence	85.28
		German Aerospace Center (DLR)	84.48
		Politecnico di Milano	82.48
		Alcatel Alenia Space	76.37
-4 -4 -2 -0 -2 -4 -3- -3-		Moscow State University	75.08
-		Tsinghua University	56.87
		Carnegie Mellon University	27.94

300

European Space Agency

Team name	Value
Centre National d'Etudes Spatiales	1733
Jet Propulsion Laboratory	1730
Georgia Tech	1721
Deimos Space	1717
The Aerospace Corporation	1647
Thales Alenia Space	1647
Moscow Aviation Institute and Khrunichev State Research	1658
GMV Aerospace and Defence	1649
Moscow State University	1633
Glasgow University et al.	1606
Tsinghua University	1565

1 and

European Space Agency

wy optimisation

Advanced Concepts Team

European

	Team name	Value
1.	Jet Propulsion Laboratory	18, 5459
2.	Politecnico di Torino, Universita' di Roma	17, 5201
3.	Tsinghua University, Beijing	17, 5277
	Advanced Concepts Team (ESA)	16, 5181
	Georgia institute of Technology	16, 5420
	The University of Texas at Austin	15, 5394
	DLR, Institute of Space Systems	14, 5438
	Analytical Mechanics Associates, Inc.	13, 5144
	Aerospace Corporation	12.2, 5472
	VEGA Deutschland	12, 4873
	University of Strathclyde, Glasgow	12, 5241

European S

Agency

	Team name	Value
1.	Politecnico di Torino, Universita' di Roma	311
2.	Advanced Concepts Team (ESA)	308
3.	University of Texas at Austin	267
	DLR	246
	State Key Laboratory & Chinese Academy of	240
	Analytical Mechanics Associates, Inc.	178
	Tsinghua University	176
	The Aerospace Corp.	163
	University of Colorado, Boulder	154
	U. of Jena, Germany & TU Delft	87
	Beihang University, Beijing	83

Advanced Concepts Team

Agency

Direct vs. Indirect methods a. The optimal control problem

Fundamentals of interplanetary Trajectory optimisation

minimize: subject to:

$$J(\mathbf{x}(t), \mathbf{u}(t)) = \int_{t_0}^{t_1} F(\mathbf{x}(t), \mathbf{u}(t)) dt$$

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$$

$$\mathbf{x}(t_0) \in S_0$$

$$\mathbf{x}(t_1) \in S_1$$

$$\mathbf{u} \in \mathcal{U}$$

Fundamentals of interplanetary Trajectory optimisation

Example: Keplerian dynamic

$$\mathbf{x} \rightarrow [\mathbf{r}, \mathbf{v}, m]$$

$$\frac{\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))}{\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))} \rightarrow \begin{cases} \dot{\mathbf{r}} = \mathbf{v} \\ \dot{\mathbf{v}} = -\frac{\mu}{r^3}\mathbf{r} + c_1\frac{u}{m}\hat{\mathbf{i}}_u \\ \dot{m} = -c_2u \end{cases}$$

$$\mathbf{x}(t_0) \in S_0 \rightarrow \mathbf{r}(t_0) = \mathbf{r}_0, \quad \mathbf{v}(t_0) = \mathbf{v}_0, \quad m(t_0) = m_0$$

$$\mathbf{x}(t_1) \in S_1 \rightarrow \mathbf{r}(t_1) = \mathbf{r}_1, \ \mathbf{v}(t_1) = \mathbf{v}_1$$

$$F(\mathbf{x}(t), \mathbf{u}(t)) = -u_1$$

$$\mathbf{u} \in \mathcal{U} \to u_1 \in [0,1], \quad |\hat{\mathbf{i}}_u| = 1$$

Fundamentals of interplanetary Trajectory optimisation

Direct vs. Indirect methods

b. Pontryagin Maximum Principle

Fundamentals of interplanetary Trajectory optimisation

$$\begin{split} \mathcal{H}(\boldsymbol{\lambda}(t), \mathbf{x}(t), \mathbf{u}(t)) &= \boldsymbol{\lambda}(t) \cdot \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) - F(\mathbf{x}(t), \mathbf{u}(t)) \\ \dot{\mathbf{x}} &= \frac{d\mathcal{H}}{d\boldsymbol{\lambda}} \\ \dot{\boldsymbol{\lambda}} &= -\frac{d\mathcal{H}}{d\mathbf{x}} \end{split}$$

(i) $\mathcal{H}(\boldsymbol{\lambda}(t), \mathbf{x}(t), \mathbf{u}^*(t)) \geq \mathcal{H}(\boldsymbol{\lambda}(t), \mathbf{x}(t), \mathbf{u}(t)), \quad \forall \mathbf{u}(t) \in \mathcal{U}$

(*ii*)
$$\mathcal{H}(\boldsymbol{\lambda}(t_1), \mathbf{x}(t_1), \mathbf{u}^*(t_1)) = 0$$

Fundamentals of interplanetary Trajectory optimisation

esa Example: Keplerian dynamic

$$\mathcal{H}(\boldsymbol{\lambda}(t), \mathbf{x}(t), \mathbf{u}(t)) = \boldsymbol{\lambda}_r(t) \cdot \mathbf{v}(t) + \boldsymbol{\lambda}_v(t) \cdot \left(-\frac{\mu}{r^3}\mathbf{r} + c_1\frac{u}{m}\hat{\mathbf{i}}_u\right) - \lambda_m c_2 u - u$$

$$\dot{\mathbf{r}} = \mathbf{v}$$

$$\dot{\mathbf{v}} = -\frac{\mu}{r^3}\mathbf{r} + c_1 \frac{u}{m}\hat{\mathbf{i}}_u$$

$$\dot{m} = -c_2 u$$

$$\dot{\boldsymbol{\lambda}}_r = \frac{\mu}{r^3}\boldsymbol{\lambda}_v - \frac{3\mu\mathbf{r}\cdot\boldsymbol{\lambda}_v}{r^5}\mathbf{r}$$

$$\dot{\boldsymbol{\lambda}}_v = -\boldsymbol{\lambda}_r$$

$$\dot{\boldsymbol{\lambda}}_m = -c_1 \frac{u}{m^2}\boldsymbol{\lambda}_v \cdot \hat{\mathbf{i}}_u$$

Fundamentals of interplanetary Trajectory optimisation

$$\mathcal{H}(\boldsymbol{\lambda}(t), \mathbf{x}(t), \mathbf{u}(t)) = \boldsymbol{\lambda}_r(t) \cdot \mathbf{v}(t) + \boldsymbol{\lambda}_v(t) \cdot \left(-\frac{\mu}{r^3}\mathbf{r} + c_1\frac{u}{m}\hat{\mathbf{i}}_u\right) - \lambda_m c_2 u - u$$

Let us apply Pontryagin maximum principle:

$$\hat{\mathbf{i}}_{u} = \frac{\boldsymbol{\lambda}_{v}}{\boldsymbol{\lambda}_{v}} \qquad \qquad \begin{cases} u = 0 & \rho < 0\\ u = 1 & \rho > 0\\ u \in [0, 1] & \rho = 0 \end{cases}$$

 $\rho = \frac{c_1}{m} \lambda_v - c_2 \lambda_m - 1 \qquad \text{Switching function}$

Fundamentals of interplanetary Trajectory optimisation

Example: Keplerian dynamic

$$\mathcal{H}(\boldsymbol{\lambda}(t), \mathbf{x}(t), \mathbf{u}(t)) = \boldsymbol{\lambda}_r(t) \cdot \mathbf{v}(t) + \boldsymbol{\lambda}_v(t) \cdot \left(-\frac{\mu}{r^3}\mathbf{r} + c_1\frac{u}{m}\hat{\mathbf{i}}_u\right) - \lambda_m c_2 u - u$$

$$\begin{aligned} \dot{\mathbf{r}} &= \mathbf{v} \\ \dot{\mathbf{v}} &= \frac{\mu}{r^3} \mathbf{r} + c_1 \frac{u}{m} \frac{\lambda_v}{\lambda_v} \\ \dot{m} &= -c_2 u \\ \dot{\boldsymbol{\lambda}}_r &= \frac{\mu}{r^3} \boldsymbol{\lambda}_v - 3\mu \frac{\mathbf{r} \cdot \boldsymbol{\lambda}_v}{r^5} \mathbf{r} \\ \dot{\boldsymbol{\lambda}}_v &= -\boldsymbol{\lambda}_r \\ \dot{\boldsymbol{\lambda}}_m &= -c_1 \frac{u}{m^2} \lambda_v \end{aligned} \qquad \begin{cases} u = 0 & \rho < 0 \\ u = 1 & \rho > 0 \\ u \in [0, 1] & \rho = 0 \end{cases} \qquad \rho = \frac{c_1}{m} \lambda_v - c_2 \lambda_m - 1 \end{aligned}$$

The OCP becomes a Two Points Boundary Value Problem TPBVP: find the costate initial values so that the final states are achieved at the final time (plus final condition on the hamiltonian if time is free, plus transversality conditions)

Direct vs. Indirect methods b. Transcription Methods

Fundamentals of interplanetary Trajectory optimisation

Indirect methods: OCP -> TPBVP

Direct methods: OCP -> NLP

Fundamentals of interplanetary Trajectory optimisation

Building blocks ii. Lagrange propagation

Fundamentals of interplanetary Trajectory optimisation

- Predicting the time evolution of an orbit from starting conditions
- It is an initial value problem (Cauchy)
- Its solution can be efficiently obtained in terms of the Lagrange coefficients F,G
- Kepler's equation needs to be solved to invert the eccentric anomaly time relation.

Building blocks i. Lambert's Problem

Fundamentals of interplanetary Trajectory optimisation

Lambert's Problem

- Going from one point to another in a fixed time.
- 2. It is, again, a TPBVP.
- Its modern solution relies on results from Lambert, Gauss, Lagrange and in more modern times Battin, Lancaster and Blanchard
- It turns out that all Lambert problems have 1 solution and, according to the transfer time, may also have 2*N multiple revolution solutions.

Lambert's Problem

Building blocks iii. Mivovitch Fly-bys

Fundamentals of interplanetary Trajectory optimisation

esa Mivovitch sling-shot

Fundamentals of interplanetary Trajectory optimisation

esa Mivovitch sling-shot

 \mathbf{v}_{pla}

Fundamentals of interplanetary Trajectory optimisation

Mivovitch sling-shot

 \mathbf{v}_{pla}

Spacecraft velocity has changed in the absolute frame

Watch Mivovitch Video

Fundamentals of interplanetary Trajectory optimisation

A deeper look into direct methods

i. Chemical propulsion

Fundamentals of interplanetary Trajectory optimisation

Given a planetary sequence of N planets find:

$$x = [t_{dep}, T_1, ..., T_N, T_{arr}]$$

To minimise:

$$J = \Delta V_1 + \Delta V_2 + \ldots + \Delta V_{arr} \ (+\Delta V_{dep})$$

 $\begin{array}{l} x \in [\underline{x}, \overline{x}] & \text{Launch} \\ (\Delta V_{dep}^2 < C3_{launch}) & \text{Lau} \end{array}$

Launch window constraint

Launcher constraint

Planetary sequence: EVVEVMe

- 1. Earth-Mars transfer
- 2. Chemical propulsion
- 3. 200 days of transfer
- 4. MJD2000 used

- 1. Earth-Mars transfer
- 2. Chemical propulsion
- 3. Days and MJD2000 used

- 1. Earth-Jupiter-Saturn transfer
- 2. Local optima cluster together
- Better local optima are close to the global one
- Clustered local optima have similar objective values

MGA-1DSM: model

$$x = [t_0, V_{\infty}, u, v, \eta, T_0] + ... + [r_p, \beta, \eta_i, T_i]$$

- Features of the MGA-1DSM model:
 - DSM value can be zero
 - Multi-revs are included
 - Resonant returns and backflips included
- Multiple objectives can be handled (<u>http://sophia.estec.esa.int/gtocwiki/</u> <u>index.php/Final_Solution</u>)

MGA-1DSM: cluster pruning

Developed as part of the work for the joint JPL/ESA Outer Planets Mission Analysis Working Group (2007-2008)

esa MGA-1DSM: The TandEM case

Spacecraft			
2085.44 kg			
1476.03 kg			
312 s			
ure			
15/11/2021			
3.34 km/s 3.1 deg			
		e	
30/04/2022			
04/04/2023			
13/01/2025			
167 m/s			
25/06/2026			
il -			
03/07/2031			
0.676 km/s			
9.63 years			

 t_0

Fundamentals of interplanetary Trajectory optimisation

 t_0, \mathbf{v}_∞

Fundamentals of interplanetary Trajectory optimisation

 $t_0, \mathbf{v}_\infty, \Delta V_1$

Fundamentals of interplanetary Trajectory optimisation

$$\begin{split} & x = [t0] \\ & + [T_1, m_{f1}, V_{xi1}, V_{yi1}, V_{zi1}, V_{xf1}, V_{yf1}, V_{zf1}] \\ & + [T_2, m_{f2}, V_{xi2}, V_{yi2}, V_{zi2}, V_{xf2}, V_{yf2}, V_{zf2}] + ... \\ & + [u_x^1, u_y^1, u_z^1] + [u_x^2, u_y^2, u_z^2] + ... \end{split}$$

constraints:

mismatch $|u^i|$ $|V_{f_i}| = |V_{f_{i+1}}|$ $V_{f_i} \cdot V_{f_{i+1}}| \ge \alpha$

- Features of the MGA-LT model:
 - Easy switch between low and high fidelity
 - Large convergence radius

Fundamentals of interplanetary Trajectory optimisation

On line resources

Fundamentals of interplanetary Trajectory optimisation

GTOP - A Trajectory Problem Database

Fundamentals of interplanetary Trajectory optimisation

Crowdsourcing Experiments (html5) <u>The Space Game</u> <u>Jupiter Hopper</u>

Fundamentals of interplanetary Trajectory optimisation

Fundamentals of interplanetary Trajectory optimisation

Asteroid deflection: What the dinosaurs did not know

Fundamentals of interplanetary Trajectory optimisation

Asteroid deflection: What the dinosaurs did not know!

- Impacts happen!!!
- From mass extinctions to regional to local damage
- We know of ~500,000 asteroids in the solar system
- ~800 are potentially hazardous
- What the dinosaurs did not know (video)

Tunguska 1908 (icy comet? Small asteroid?)

Winslow, Arizona (~49.000 years ago)

 Map of confirmed (red), perspective for verification (magenta) and proposed for further study (blue) impact structures on the Earth. Size of circles is proportional to the crater diameter.
Source: Institute of Computational Mathematics and Mathematical Geophysics. Novosibirsk, RUSSIA

Fundamentals of interplanetary Trajectory optimisation

- 2003: 6 industrial studies on the topic of NEOs characterization and hazard mitigation
- 2004: DQ is recommended as highest priority for near-term implementation of NEO missions (NEOMAP): "Don Quijote has the potential to teach us a great deal, not only about the internal structure of a NEO, but also about how to mechanically interact with it"
- First time that the deflection of a celestial body may be proved and studied

Sancho Observing the impact

The orbital mechanics of moving asteroids needed to be studied in more details

Fundamentals of interplanetary Trajectory optimisation

 $\Delta \zeta = \frac{3a}{\mu} V_E \sin \vartheta \int_0^{t_p} (t_s - \tau) \mathbf{v} \cdot \mathbf{A} \, d\tau$

Valid for all non destructive deflection strategies!!

Fundamentals of interplanetary Trajectory optimisation

- In late December 2004 impact monitoring robots found that NEA 2004 MN4 would have an extremely close approach with the Earth on the 13th of April 2029, with a probability of hitting our planet that rose up to 2.6% on the 27th of December.
- In that date some previous observation data were mined from the Spacewatch archives and resulted in dropping significantly the impact risk.
- 3. Further observation from Arecibo, the 27th, 29th and 30th of January 2005 served to exclude the impact risk.

Apophis may teach us a lot on how to plan a real deflection mission

Globally optimal trajectories

Departure	Impact	U	Deflection
		$\rm km/sec$	$\Delta \zeta$, km
16/4/2011	12/6/2012	7.93	87.8
25/4/2012	4/5/2013	8.14	63
25/9/2013	27/3/2014	8.29	43.5
3/6/2014	26/2/2015	10.9	18
16/4/2018	12/7/2019	7.32	57.58
17/4/2019	31/5/2020	8.02	43.37
29/12/2020	9/3/2021	7.15	47.4
8/9/2021	25/3/2022	9.01	17.23
2/3/2026	2/3/2027	7.09	10.05
1/4/2027	2/12/2027	7	3.96
5/2/2028	18/11/2028	5	0.45

Don Quijote spacecraft as designed by the Concurrent Design Facility at ESA (2004)

2006: Pre-keyhole deflection of Apophis is possible with DQ!!

Human Missions to Asteroids

Fundamentals of interplanetary Trajectory optimisation

MR-DSM: Human Mission to Asteroids in 3 hours!!

- Obama's vision
- Asteroid selection from the MPCORB database
- ~ ~50.000 GO problems solved in 3 hours!!
- MGA-DSM model

MR-DSM: Human Mission to Asteroids in 3 hours!!

- Asteroid selection from the MPCORB database
- ~ ~50.000 GO problems solved in 3 hours!!
- MGA-DSM model

MR-DSM: Human Mission to Asteroids in 3 hours!!

- Asteroid selection from the MPCORB database
- ~ ~50.000 GO problems solved in 3 hours!!
- MGA-DSM model