HIGH-PERFORMANCE COMPUTING FOR ASTROPHYSICS AND COSMOLOGY

MARCO BALDI

2ND SEMESTER 6 CFU: Lectures (4) + Laboratory (2)

[i.e. how to do more work in less time...]

[i.e. how to do more work in less time...]

Say you have **some work** to do...

 For small problem size the direct solution is often the fastest way to achieve the goal (not efficient, but easy to implement)

[i.e. how to do more work in less time...]

Say you have **some work** to do...

 For small problem size the direct solution is often the fastest way to achieve the goal (not efficient, but easy to implement)

[i.e. how to do more work in less time...]

- For small problem size the direct solution is often the fastest way to achieve the goal (not efficient, but easy to implement)
- To **improve efficiency**, you may invest time in **developing tools**

[i.e. how to do more work in less time...]

- For small problem size the direct solution is often the fastest way to achieve the goal (not efficient, but easy to implement)
- To **improve efficiency**, you may invest time in **developing tools**

[i.e. how to do more work in less time...]

- For small problem size the direct solution is often the fastest way to achieve the goal (not efficient, but easy to implement)
- To **improve efficiency**, you may invest time in **developing tools**
- If the problem size increases, you can try to improve your technology

[i.e. how to do more work in less time...]

- For small problem size the direct solution is often the fastest way to achieve the goal (not efficient, but easy to implement)
- To **improve efficiency**, you may invest time in **developing tools**
- If the problem size increases, you can try to improve your
 technology

[i.e. how to do more work in less time...]

Say you have **some work** to do...

- For small problem size the direct solution is often the fastest way to achieve the goal (not efficient, but easy to implement)
- To **improve efficiency**, you may invest time in **developing tools**
- If the problem size increases, you can try to improve your technology

At some point, you may **reach a limit** in the efficiency of your tool. But the **size** of your problem may still **keep increasing**... what to do?

[i.e. how to do more work in less time...]

Say you have **some work** to do...

- For small problem size the direct solution is often the fastest way to achieve the goal (not efficient, but easy to implement)
- To improve efficiency, you may invest time in developing tools
- If the problem size increases, you can try to improve your technology

At some point, you may **reach a limit** in the efficiency of your tool. But the **size** of your problem may still **keep increasing**... what to do?

GO PARALLEL!

[i.e. how to do more work in less time...]

HPC is a **type of parallel computing** where a large and complex problem is **distributed** over many computational units that perform a given set of operations **on their own portion** of the problem dataset and then **exchange data and instructions** through a **fast network**

HPC is a **type of parallel computing** where a large and complex problem is **distributed** over many computational units that perform a given set of operations **on their own portion** of the problem dataset and then **exchange data and instructions** through a **fast network**

HPC is particularly important for Astrophysics and Cosmology

- Theory (simulations and modelling)
- Observations (data processing and analysis)

Illustris TNG-100 Nelson et al 2019 Total CPU time: 18x10⁶ hr ~2055 yrs Run time on 10752 cores: ~70 days Total memory requested: ~43 TB

HPC is particularly important for Astrophysics and Cosmology

- Theory (simulations and modelling)
- Observations (data processing and analysis)

Illustris TNG-100 Nelson et al 2019 Total CPU time: 18x10⁶ hr ~2055 yrs Run time on 10752 cores: ~70 days Total memory requested: ~43 TB

COURSE OBJECTIVES

- Acquire a general knowledge of Parallel Computing concepts, terminology, and code design strategies
- Acquire practical skills on remote access to shared computing environments, data handling, batch scheduling for parallel jobs
- Acquire basic knowledge of Message Passing Interface (MPI) protocols to implement parallel algorithms
- Apply all these skills to some typical problems in astrophysics and cosmology (N-body) using the public code Gadget-2
- Embark in Master Thesis or PhD projects on Computational Astrophysics/Cosmology

Chapter 1

Introduction to Parallel Computing

- 1.1 General overview and scientific applications
- 1.2 Concepts and terminology
- **1.3 Memory Architectures**
- 1.4 Parallel Programming Models
- 1.5 Design of parallel algorithms
- 1.6 **Laboratory** exercises on basic parallelisation strategies

Chapter 1

Introduction to Parallel Computing

- 1.1 General overview and scientific applications
- 1.2 Concepts and terminology
- **1.3 Memory Architectures**
- 1.4 Parallel Programming Models
- 1.5 Design of parallel algorithms

1.6 **Laboratory** exercises on basic parallelisation strategies

Chapter 2 Practical tools

- 2.1 Basic Unix Commands
- 2.2 Working remotely
- 2.3 Basics of bash scripting
- 2.4 Regular Expressions
- 2.5 Batch jobs scheduling
- 2.6 **Laboratory** exercises on bash scripting and data handling

Chapter 1

Introduction to Parallel Computing

1.1 General overview and scientific applications

- 1.2 Concepts and terminology
- **1.3 Memory Architectures**
- 1.4 Parallel Programming Models
- 1.5 Design of parallel algorithms

1.6 **Laboratory** exercises on basic parallelisation strategies

Chapter 2 Practical tools

- 2.1 Basic Unix Commands
- 2.2 Working remotely
- 2.3 Basics of bash scripting
- 2.4 Regular Expressions
- 2.5 Batch jobs scheduling
- 2.6 **Laboratory** exercises on bash scripting and data handling

Chapter 3 Introduction to MPI parallel programming

3.1 General concepts of Message Passing
3.2 Getting started with MPI
3.2 MPI environment management
3.4 Point-to-Point communications
3.5 Collective communications
3.6 Group and Communicator Management
3.6 Laboratory exercises on MPI
parallelisation

COURSE PROGRAM & STRUCTURE

Chapter 1

Introduction to Parallel Computing

- 1.1 General overview and scientific applications
- 1.2 Concepts and terminology
- **1.3 Memory Architectures**
- 1.4 Parallel Programming Models
- 1.5 Design of parallel algorithms

1.6 **Laboratory** exercises on basic parallelisation strategies

Chapter 2 Practical tools

2.1 Basic Unix Commands
2.2 Working remotely
2.3 Basics of bash scripting
2.4 Regular Expressions
2.5 Batch jobs scheduling
2.6 Laboratory exercises on bash scripting and data handling

Chapter 3

Introduction to MPI parallel programming

- 3.1 General concepts of Message Passing
- 3.2 Getting started with MPI
- 3.2 MPI environment management
- 3.4 Point-to-Point communications
- 3.5 Collective communications
- 3.6 Group and Communicator Management
- 3.6 **Laboratory** exercises on MPI parallelisation

Chapter 4 HPC in Astrophysics and Cosmology

- 4.1 Overview of N-body gravity solvers
- 4.2 N-body parallelisation strategies: domain decomposition and load balancing
- 4.3 The TreePM N-body code Gadget2
- 4.4 Laboratory: Examples of N-body sims
 - 4.4.1 Galaxy collisions (and/or)
 - 4.4.2 Cluster formation (and/or)
 - 4.4.3 Cosmic Large-Scale Structure

Chapter 1

Introduction to Parallel Computing

- 1.1 General overview and scientific applications
- 1.2 Concepts and terminology
- **1.3 Memory Architectures**
- 1.4 Parallel Programming Models
- 1.5 Design of parallel algorithms

1.6 **Laboratory** exercises on basic parallelisation strategies

Chapter 2 Practical tools

2.1 Basic Unix Commands
2.2 Working remotely
2.3 Basics of bash scripting
2.4 Regular Expressions
2.5 Batch jobs scheduling
2.6 Laboratory exercises on bash scripting and data handling

Chapter 3

Introduction to MPI parallel programming

- 3.1 General concepts of Message Passing
- 3.2 Getting started with MPI
- 3.2 MPI environment management
- 3.4 Point-to-Point communications
- 3.5 Collective communications
- 3.6 Group and Communicator Management
- 3.6 **Laboratory** exercises on MPI parallelisation

Chapter 4 HPC in Astrophysics and Cosmology

- 4.1 Overview of N-body gravity solvers
- 4.2 N-body parallelisation strategies: domain decomposition and load balancing
- 4.3 The TreePM N-body code Gadget2
- 4.4 Laboratory: Examples of N-body sims
 - 4.4.1 Galaxy collisions (and/or)
 - 4.4.2 Cluster formation (and/or)
 - 4.4.3 Cosmic Large-Scale Structure

Reference teaching material: lecture slides

Course Tools

This course is part of the **Open Physics Hub** project: <u>https://site.unibo.it/openphysicshub</u>

and will have direct access to the DIFA HPC cluster

(laboratory sessions will be performed hands-on on this cluster)

 Image: Structures / HPC Cluster "Matrix"

HPC Cluster "Matrix"

OPH has recently deployed and installed a <u>High Performance Computing</u> <u>cluster</u> called "Matrix" with 1952 virtual cores and 4 GB RAM/core, equipped with 500 TB of disk storage space, used both for DIFA research activities and innovative teaching courses. More specifically, the "Matrix" computing cluster features:

- 22 compute nodes featuring multi-core Intel Xeon processors with hyperthreading
- 7.8 TB of RAM for an average of 8 GB per physical core, 4 GB per thread
- Infiniband Mellanox 100 Gb/s low-latency connection switch

• 3 disk nodes with 30 disks of 12 TB/disk

FUNDAMENTAL PHYSICS & COSMOLOGY

Neutralinos

Axions

Gadget3 (Springel 2005)

AX-Gadget (Nori & Baldi 2018)

FUNDAMENTAL PHYSICS & COSMOLOGY

Neutralinos

Axions

Gadget3 (Springel 2005)

AX-Gadget (Nori & Baldi 2018)

HIGH-PERFORMANCE COMPUTING FOR ASTROPHYSICS AND COSMOLOGY

MARCO BALDI

FOR ANY ADDITIONAL INFORMATION: marco.baldi5@unibo.it OFFICE 455

2nd semester Course Language: <mark>English</mark> 6 CFU: Lectures (4) + Laboratory (2)