Astrophysics of Galaxies

Silvia Pellegrini

silvia.pellegrini@unibo.it

lessons during the **first** *period* (from September to December)

COURSE CONTENT

structure of galaxies

observed properties

theory (internal dynamics) → modeling → applications

in-depth analysis of a few topics, representative of current research

AIMS

- give a **proper description** of the galaxy structure
 - build models, compare them with observations, derive conclusions
- understand the literature (a few papers examined in detail)
- broaden the students' view of the current knowledge,
 - and ongoing research (useful basis for a thesis)

Main topics

- > Introduction (historical perspective)
- > Theory: structure and internal dynamics
- > Dark matter
- Supermassive (central) black holes
- Scaling laws (correlations between quantities characterizing morphology/structure/stellar population)
- Initial stellar mass function (IMF)
- > ISM (hot)

applications

Galaxies show two fundamental stellar components

1) Structure and internal dynamics of spheroids and discs

- ✓ collisionless systems (CBE)
- ✓ distribution function $f(I_1, I_2, I_3)$ ← → kinematic field
- ✓ Jeans equations:

"velocity dispersion" (σ), "streaming velocity" (v) orbital *anisotropy* (σ_{ij}) multiple mass components

spherical and axisymmetric: **spheroids** and **discs**

✓ "classic" applications:

analogy stellar system ← fluid

determination of the *mass* profiles (*stellar* + *dark*)

presence of **black holes**

(examples from current research) ightarrow

- ✓ **more "operative" applications** (examples from current research):
- Epoch of IFS & large surveys

Emsellem et al. 2011, Cappellari et al. 2011,

→ kinematical classification (vs. morphological)
 → improved correlations/scaling laws

ATLAS^{3D} CALIFA MaNGA SAMI

- Compare observed and theoretical/model quantities
 Derive clues/constraints on the galaxy properties:
 - \rightarrow what is the total mass profile? is it "universal"?
 - \rightarrow what is the stellar initial mass function (IMF)? "universal"?
 - ightarrow implications for the formation

2) Supermassive central black holes

✓ discovery, mass measurement (HST)

 $M_{BH}-\sigma$

 \checkmark relationship with the host galaxy

example: brightness profiles in the central galactic regions:

NGC3115, VLT & Chandra

3) Scaling laws

What constraints on the structure and evolution of galaxies?

Bibliography

1) Binney & Tremaine 1987, 2008 Galactic Dynamics,

Princeton Univ. Press

- 2) Ciotti 2021, Introduction to Stellar Dynamics, Cambridge Univ. Press
- 3) Greggio & Renzini 2011, Stellar Populations. A user guide from low to high redshift, Wiley
- 4) Kim & Pellegrini 2012

5) Papers

6) teaching material on virtuale.unibo.it

Questions? contact the teacher: office (2S9), on appointment silvia.pellegrini@unibo.it