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PART I 
 

Cross-sectional Properties 



Outline of PART I 

• Beam: Geometric Model. 

 

• Cross-Sectional Properties: 
• Area 

• First Moments of Area 

• Centroid 

• Second Moments of Area 

• Transfer of Axis Theorem and Rotation of Axes 

• Principal Axes and Central Ellipse of Inertia. 

 

 

 

 



Beam: Geometric Model 

A beam is a structural element generated by a planar figure Ω 
(i.e. cross section) that moves in the space remaining normal to 
the trajectory described by its centroid. 
 
 

Ω 



Geometric Requirements: 

• Ω(s) constant or can vary continuously: 

 

 

 

 

 

•  
 
 
 

BEAM 

YES! 

h 

b 

𝑙 

ℎ ≪ 𝑙 
𝑏 ≪ 𝑙 

Beam: Geometric Model 

YES! Ω(z) 

NO! 

Ω=const 



For any cross-section Ω, it is possible to define some quantities 
that are related only to the cross-section geometry. 

 

Ω • Area A 
 

• Static Moment of Area 
 

• Centroid C 
 

• Moments and Product 
of Inertia  

Cross-sectional Properties 

C 



Area:  

𝐴 =  𝑑𝐴

Ω

  

 
𝐴 = [𝑚2] 

𝑑𝐴: 

Cross-sectional Properties 



First Moment of Area: Static Moments  

𝑆𝑥 =  𝑦𝑑𝐴

Ω

  

𝑆𝑦 =  𝑥𝑑𝐴

Ω

 

 
𝑆 = [𝐿3] 

 
 

Cross-sectional Properties 



Centroid:  
 

The centroid  C of a plane figure or two-
dimensional shape is the arithmetic mean 
position of all the points in the shape. 

 
 
 The centroid C of an area is the point of 
intersection of all the straight lines that 
subdivide the plane figure in equal parts 

Cross-sectional Properties 



Centroid:  
 

 
 

𝑥𝐶 =
𝑆𝑦

𝐴
 

 

𝑦𝐶 =
𝑆𝑥
𝐴

 

 
𝑥𝐶 , 𝑦𝐶 = [𝐿] 

 

Cross-sectional Properties 



Static Moment & Centroid: Properties 

 

• 𝑆𝑥 𝑎𝑛𝑑 𝑆𝑦 can be ⋛ 0   

• The static moment 𝑆 is zero if calculated with respect to a 
centroidal axis (i.e. the centroid lies on the axis) 

• The Static Moment calculated with respect to an axis of 
symmetry = 0. 

• If an area has an axis of symmetry, the centroid C lies on the axis. 

• If an area has two axes of symmetry, the centroid C is located at 
the intersection of the axes . 

• 𝑆 =  𝑆𝑖𝑖  (domain of integration can be added: geometric 
decomposition) 

 

Cross-sectional Properties 



Why is it called first moment? 

Cross-sectional Properties 

Let’s assume to apply a 
vector at C whose 
magnitude is the area A 
of the region W (the 
dimensions of this 
vector are [L2]). 
The moment of this 
vector with respect to y 
is 𝐴𝑥𝐶  , which is the 
static moment 𝑆𝑦  



Second Moment of Area: Moment of Inertia: 

𝐼𝑥 =  𝑦
2𝑑𝐴

Ω

  

𝐼𝑦 =  𝑥
2𝑑𝐴

Ω

 

 
𝐼 = [𝐿4] 

 
 

Cross-sectional Properties 



Second Moment of Area: Product of Inertia and Polar 
Moment of Area 

𝐼𝑥𝑦 =  𝑥𝑦𝑑𝐴
Ω

  Product o Inertia 

 

𝐼𝑂 =  𝑟2𝑑𝐴
Ω

    Polar Moment of Area 

 
𝐼𝑥𝑦 , 𝐼𝑂 = [𝐿

4] 

 
 

Cross-sectional Properties 



Second Moments of Area: Properties 

 

• 𝐼𝑥 𝑎𝑛𝑑 𝐼𝑦  > 0 

• 𝐼𝑂 > 0 

• 𝐼𝑂 = 𝐼𝑥 + 𝐼𝑦 when O is the origin of the x and y axes. 

• 𝐼𝑥𝑦  ⋚ 0 

• 𝐼𝑥𝑦 = 0 if either x or y is an axis of symmetry  

• 𝐼 =  𝐼𝑖𝑖  (valid for all the Second Moments of Area) 

 
 

Cross-sectional Properties 



Change of coordinates 

 
 𝑥′ = 𝑥(𝐶) + 𝑑𝑦′𝑦(𝐶)  

𝑦′ = 𝑦(𝐶) + 𝑑𝑥′𝑥(𝐶)  

Cross-sectional Properties 

Note that 𝑑𝑦′𝑦(𝐶)  and 

𝑑𝑥′𝑥(𝐶)  are the 

coordinates of the 
centroid C with respect 
to the Cartesian system 
Ox’y’. Thus  𝑑𝑦′𝑦(𝐶) = 𝑥𝐶

′  

and 𝑑𝑥′𝑥(𝐶) = 𝑦𝐶
′  



Parallel Axes: Static Moment 

 

 
 

𝑆𝑥′ = 𝑆𝑥(𝐶) + 𝐴𝑑𝑥′𝑥(𝐶) = 𝐴𝑑𝑥′𝑥(𝐶)  
𝑆𝑦′ = 𝑆𝑦(𝐶) + 𝐴𝑑𝑦′𝑦(𝐶) = 𝐴𝑑𝑦′𝑦(𝐶)  

 
 

Cross-sectional Properties 

Note that 𝑆𝑥(𝐶) = 𝑆𝑦(𝐶) = 0 

𝑆𝑥′ =  𝑦′𝑑𝐴

Ω

=  𝑦(𝐶) + 𝑑𝑥′𝑥(𝐶) 𝑑𝐴
Ω

= 𝑆𝑥(𝐶) + 𝐴𝑑𝑥′𝑥(𝐶) = 𝐴𝑑𝑥′𝑥(𝐶)  



Transfer-of-axis Theorem: Second Moments of Area  

 

 

 
 

𝐼𝑥′ = 𝐼𝑥(𝐶) + 𝐴 𝑑𝑥′𝑥(𝐶)
2

 

𝐼𝑦′ = 𝐼𝑦(𝐶) + 𝐴 𝑑𝑦′𝑦(𝐶)
2

 

𝐼𝑥′𝑦′ = 𝐼𝑥(𝐶)𝑦(𝐶) + 𝐴𝑑𝑥′𝑥(𝐶)𝑑𝑦′𝑦(𝐶)  

Cross-sectional Properties 

Transfer-of-axis Theorem 



Rotation of the Axes: 

 
 

𝑥′ = 𝑥𝑐𝑜𝑠𝛼 + 𝑦𝑠𝑖𝑛𝛼 
𝑦′ = 𝑦𝑐𝑜𝑠𝛼 − 𝑥𝑠𝑖𝑛𝛼 

 
 
 

 

Cross-sectional Properties 



Rotation of the axes: Second Moment of Area  

 

 
 
𝐼𝑥′ =

𝐼𝑥 + 𝐼𝑦

2
+
𝐼𝑥 − 𝐼𝑦

2
cos 2𝛼 − 𝐼𝑥𝑦𝑠𝑖𝑛2𝛼 

𝐼𝑦′ =
𝐼𝑥 + 𝐼𝑦

2
−
𝐼𝑥 − 𝐼𝑦

2
cos 2𝛼 + 𝐼𝑥𝑦𝑠𝑖𝑛2𝛼 

𝐼𝑥′𝑦′ =
𝐼𝑥 − 𝐼𝑦

2
𝑠𝑖𝑛2𝛼 + 𝐼𝑥𝑦𝑐𝑜𝑠2𝛼 

Cross-sectional Properties 



Principal axes (1/3) 
Goal:  determine the value of 𝛼0 for which 𝐼𝑥′ and 𝐼𝑦′ are 

the maximum and minimum moments of inertia for the 
cross section (or viceversa) 

𝑑𝐼𝑦′

𝑑𝛼
= 0          

𝑑𝐼𝑥′
𝑑𝛼

= 0 

 

𝑡𝑔2𝛼0 = −
2𝐼𝑥𝑦

𝐼𝑥−𝐼𝑦
                             

Note that if we enforce 𝐼𝑥′𝑦′ = 0 we obtain the expression 

above. Thus, when 𝛼 = 𝛼0  𝐼𝑥′ and 𝐼𝑦′ attain the maximum and 

minimum values (or vice versa) and simultaneously 𝐼𝑥′𝑦′ = 0 

Cross-sectional Properties 



Principal axes (2/3) 
 With 𝐶 ≡ 𝑂 we define 𝜉, 𝜂 as the centroidal principal axes: 
 
• 𝐼𝜉 , 𝐼𝜂 principal moments of inertia (minimum/maximum 

moment of inertia or viceversa ) 
 
with: 
•  𝐼𝜉𝜂 = 0 

 
 
and: 

• 𝐼𝜉  , 𝐼𝜂 =
𝐼
𝑥(𝐶)

+𝐼
𝑦(𝐶)

2
±

𝐼
𝑥(𝐶)

−𝐼
𝑦(𝐶)

2

2

+ 𝐼𝑥(𝐶)𝑦(𝐶)
2

 

 

Cross-sectional Properties 



Principal axes (3/3): Properties 

 

• If a figure has an axis of symmetry, one of the principal 
axis is the axis of symmetry. 

• Any other axis perpendicular to the first one (of 
symmetry) is the second principal axis. 

 
 

Cross-sectional Properties 



Mohr circle: 
 Given the centroidal principal axes 𝜉, 𝜂, with 𝐼𝜉 > 𝐼𝜂 

 

𝐼𝑥 =
𝐼𝜉 + 𝐼𝜂

2
+
𝐼𝜉 − 𝐼𝜂

2
𝑐𝑜𝑠2𝛼 

𝐼𝑦 =
𝐼𝜉 + 𝐼𝜂

2
−
𝐼𝜉 − 𝐼𝜂

2
𝑐𝑜𝑠2𝛼 

𝐼𝑥𝑦 =
𝐼𝜉 − 𝐼𝜂

2
𝑠𝑖𝑛2𝛼 

 
Parametric equations of a circle on the plane 𝐼𝑥, 𝐼𝑥𝑦 . 

 
Note that the expressions above are written as though x and y are 
two axes that rotate of an angle  𝛼 with respect to the princial axes 

Cross-sectional Properties 



Mohr circle: 
 Parametric equations of a circle in the plane 𝐼𝑥, 𝐼𝑦. 

 𝑅 =
𝐼𝜉−𝐼𝜂

2
; 𝐶 =

𝐼𝜉+𝐼𝜂

2
, 0  

 

*A. Di Tommaso. Geometria delle Masse 
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Radii of Gyration & Ellipse of Inertia 

 
 
 

 
 

𝜌𝜉 =
𝐼𝜉

𝐴
         𝐼𝜉= 𝐴𝜌𝜉

2 

 

𝜌𝜂 =
𝐼𝜂

𝐴
          𝐼𝜂= 𝐴𝜌𝜂

2 

 
Analytical expression: 
 

𝜉2

𝜌𝜂
2 +

𝜂2

𝜌𝜂
2 = 1 

 

Cross-sectional Properties 



Radii of Gyration & Ellipse of Inertia 

The Ellipse  of Inertia provides a graphical representation of the 
inertia properties of the cross-section. 

 
 

 
 

𝜌𝑥 =
𝐼𝑥
𝐴
         𝐼𝑥= 𝐴𝜌𝑥

2 

 

𝜌𝑦 =
𝐼𝑦

𝐴
          𝐼𝑦= 𝐴𝜌𝑦

2 

 
 

*A. Di Tommaso. Geometria delle Masse 
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PART II 
 

Solid Mechanics: Displacements and 
Strains, Strains and Stresses, Stresses 

and Forces 
 



Outline of PART II 

• Displacements and Strains: compatibility equations 

 

• Strains and Stresses: constitutive equations 

 

• Stresses  and Forces: equilibrium equations 

 
 

 

 

 



Displacements and Strains (1D) 

• displacement: 

 
𝑢(𝑥) 

 

• axial strain: 

 

𝜖(𝑥) =
𝐴′𝐵′ − 𝐴𝐵 

𝐴𝐵
=
𝑑𝑢(𝑥)

𝑑𝑥
 

Phillips, Wadee. Pre course Reading Solid Mechanics [1] 

Note: the strain is assumed to be 
positive if the material/solid 
elongates and negative viceversa 𝜖11 =

𝑑𝑢1
𝑑𝑥1

 

different notation 



• displacement: 
 
𝑢1(𝑥1, 𝑥2)  and 𝑢2(𝑥1, 𝑥2) 
 
 
• axial strain: 

 

𝜖11 =
𝜕𝑢1
𝜕𝑥1

 

𝜖22 =
𝜕𝑢2
𝜕𝑥2

 

 
• shear strain: 

 

𝛾12 =
𝜋

2
− 𝛽 = 𝜃 − 𝜆 =

𝜕𝑢2

𝜕𝑥1
+
𝜕𝑢1

𝜕𝑥2
          with: 𝛾12 = 2𝜖12 

 
 

[1] 

Displacements and Strains (2D) 



• displacement: 

𝑢1(𝑥1, 𝑥2, 𝑥3), 𝑢2(𝑥1, 𝑥2, 𝑥3) and 𝑢3(𝑥1, 𝑥2, 𝑥3) 

 

• axial strain: 

𝜖11 =
𝜕𝑢1

𝜕𝑥1
, 𝜖22 =

𝜕𝑢2

𝜕𝑥2
, 𝜖33 =

𝜕𝑢3

𝜕𝑥3
 

 

• shear strain: 

𝛾12 =
𝜕𝑢2

𝜕𝑥1
+
𝜕𝑢1

𝜕𝑥2
          with: 𝛾12 = 2𝜖12 

𝛾13 =
𝜕𝑢3

𝜕𝑥1
+
𝜕𝑢1

𝜕𝑥3
          with: 𝛾13 = 2𝜖13 

𝛾23 =
𝜕𝑢3

𝜕𝑥2
+
𝜕𝑢2

𝜕𝑥3
          with: 𝛾23 = 2𝜖23 

 

Displacements and Strains (3D) 



in 2D: 

 

𝜖11
𝜖22
2𝜖12

=

𝜕

𝜕𝑥1
0
𝜕

𝜕𝑥2

0
𝜕

𝜕𝑥2
𝜕

𝜕𝑥1

𝑢1
𝑢2

 

in 3D: 

 

𝜖11
𝜖22
𝜖33
2𝜖12
2𝜖13
2𝜖23

=

𝜕

𝜕𝑥1
0
0
𝜕

𝜕𝑥2
𝜕

𝜕𝑥3
0

0
𝜕

𝜕𝑥2
0
𝜕

𝜕𝑥1
0
𝜕

𝜕𝑥3

0
0
𝜕

𝜕𝑥3
0
𝜕

𝜕𝑥1
𝜕

𝜕𝑥2

𝑢1
𝑢2
𝑢3

 

in 1D: 

 

𝜖11 =
𝑑𝑢1
𝑑𝑥1

 

𝝐=Du In compact notation: 

Displacements and Strains (3D) 
The compatibility equations link displacements and strains  



In 3D for a given strain tensor   

 

 

 

the principal strains 𝜖𝑎 and principal directions of strain 𝒂 ≡
[𝑎1, 𝑎2, 𝑎3], i.e. those directions in which there exist only axial strain 
and no distorsions, can be found solving the eigenvalue problem: 

 
𝝐 − 𝜖𝑎𝑰 𝒂 = 0 

 

𝝐 2nd order strain tensor  

𝜖𝑎 principal strain 

𝒂 principal directions 

𝑰 identity matrix 

 

 

 

𝝐 =

𝜖11 𝜖12 𝜖13
𝜖12 𝜖22 𝜖23
𝜖13 𝜖23 𝜖33

 

Displacements and Strains 

quantities to be detrmined 



In 2D the principal strains and the principal directions, in the plane 
𝑥1 − 𝑥2, can be determined also as 
 
• principal strains: 

𝜖1, 𝜖2 =
𝜖11 + 𝜖22

2
±

𝜖11 − 𝜖22
2

2

+ 𝜖12
2 

 
• the angle 𝛼 of the principal directions 𝑎1, 𝑎2 w.r.t. the 𝑥1, 𝑥2 axes: 
 

𝑡𝑔2𝛼 = −
2𝜖12

𝜖11 − 𝜖22
 

 

Note: Mohr circle of radius  R =
𝜖1−𝜖2

2
 and centre 𝐶 =

𝜖1+𝜖2

2
 

 
 
 

Displacements and Strains 



Strains and Stresses 
The constitutive equations are the relations between kinetics 
(stress, stress-rate) quantities and kinematics (strain, strain-rate) 
quantities for a material.  

They describe mathematically the actual behavior of a material.  

Uniaxial (1D) stress-strain curves 

𝜖 𝜖 𝜖 

𝜎 𝜎 𝜎 



In 3D the constitutive equations in linear elasticity read 
 

𝝈 = 𝑪𝝐 
 

where  𝑪 is the Elasticity matrix, 𝝈 is the vector collecting the 
stress components and 𝝐 is the vector of the strain components 
 

𝜎11
𝜎22
𝜎33
𝜎12
𝜎13
𝜎23

=

𝐶11 𝐶12
𝐶21 𝐶22

𝐶13 𝐶14
𝐶23 𝐶24

𝐶15 𝐶16
𝐶25 𝐶26

𝐶31 𝐶32
𝐶41 𝐶42

𝐶33 𝐶34
𝐶43 𝐶44

𝐶35 𝐶36
𝐶45 𝐶46

𝐶51 𝐶52
𝐶61 𝐶62

𝐶53 𝐶54
𝐶63 𝐶64

𝐶55 𝐶56
𝐶65 𝐶66

𝜖11
𝜖22
𝜖33
2𝜖12
2𝜖13
2𝜖23

 

 
Alike 𝝐 = 𝑺𝝈, where  𝑺 = 𝑪−1 is the Compliance matrix. In the 
general case the material has a 𝑪 matrix characterized by 36 
indipendent coefficients. 

 

Strains and Stresses 



MATERIAL NAME  
INDEPENDENT 
COEFFICIENTS 

NOTE 

TRICLINIC 
(GENERAL 

ANISOTROPIC) 
21 

  
The material has NO planes of symmetry, i.e. the material 
properties differ in all directions.  It is possible to prove that the 
elasticity and compliance tensor are symmetric.  The number of 
independent coefficients reduces to 21. 
  

MONOCLINIC 13 
The material has 1 plane of symmetry . Number of coefficients 
reduces to 13. 
 

ORTHOTROPIC 9 
The material has 3 mutually perpendicular planes of symmetry. 
This implies no interaction between normal and shear stresses and 
strains. Number of coefficients reduces to 9. 

TRANSVERSELY 
ISOTROPIC 

5 
The material has one plane in which material properties are 
independent of the orientation.  If 𝑥1 − 𝑥2 is the plane, subscripts 
1 and 2 are interchangeable. Number of coefficients reduces to 5. 

ISOTROPIC 2 
The material has infinite planes of symmetry, i.e. the material 
properties are independent of orientation. All subscripts are 
interchangeable.   

Strains and Stresses 



For an Isotropic material: 

 

 

 
𝑪 = 

𝑺 = 𝑪−1= 

Strains and Stresses 

where 𝐸 is the Young’s modulus, 𝜈 is the Poisson’s ratio 



Stresses and Forces 
Cauchy Principle states that upon any surface that divides the body, 
the action of one part of the body on the other is equivalent 
(equipollent) to the system of distributed forces and couples on the 
surface dividing the body. 
 

 

 

 

 

𝑻(𝒏, 𝑥) 

Stress Vector: 

𝒇 

Body force: 

𝑷 

Surface force: 



The stress vector 𝑻, in general, has a component 𝜎𝑛 along the 
normal 𝒏 to the surface, and two tangential components, 𝜏𝑐 and 
𝜏𝑏, on the surface. 

𝜎𝑛 = 𝑻 𝒏, 𝑥  𝒏 
 𝜏𝑐 = 𝑻 𝒏, 𝑥  𝒄 

𝜏𝑏 = 𝑻 𝒏, 𝑥  𝒃 

𝝉 = 𝜏𝑐
2 + 𝜏𝑏

2 

Stresses and Forces 



The stress vector 𝑻 can be related to the the Cauchy stress tensor 

 

 

 

as 
 

 

 

 

𝝈 =

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

 

𝑻 𝒏, 𝑥 = 𝝈𝒏 =

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

𝑛1
𝑛2
𝑛3

 

Stresses and Forces 

Note: from the balance of angular moment it can be 

proved that 𝜎12=𝜎21, 𝜎13=𝜎31 and 𝜎23=𝜎32, i.e. the 
stress tensor has 6 indipendent components. 



The equilibrium equations link forces and stresses: 

 

𝑑𝑖𝑣 𝝈 + 𝒇 = 𝟎 

scalar equations: 

 
𝜕𝜎11
𝜕𝑥1

+
𝜕𝜎12
𝜕𝑥2

+
𝜕𝜎13
𝜕𝑥3

+ 𝑓1 = 0 

𝜕𝜎12
𝜕𝑥1

+
𝜕𝜎22
𝜕𝑥2

+
𝜕𝜎23
𝜕𝑥3

+ 𝑓2 = 0 

𝜕𝜎13
𝜕𝑥1

+
𝜕𝜎23
𝜕𝑥2

+
𝜕𝜎33
𝜕𝑥3

+ 𝑓3 = 0 

on the boundary: 

 
𝑷 = 𝝈𝒏 

 

Stresses and Forces 



In 3D for a given stress tensor   

 

 

 

the principal stresses 𝜎𝑎 and principal directions of stress 𝒂 ≡
[𝑎1, 𝑎2, 𝑎3], i.e. those directions in which there exist only axial stress 
and no shear stress, can be found solving the eigenvalue problem: 

 
𝝈 − 𝜎𝑎𝑰 𝒂 = 0 

 

𝝈 2nd order strain tensor  

𝜎𝑎 principal strain 

𝒂 principal directions 

𝑰 identity matrix 

 

 

 

𝝈 =

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

 

quantities to be detrmined 

Stresses and Forces 



PART III 
 

Internal Forces 



Outline of PART III 

• Internal forces: 
• Area 

• First Moments of Area 

• Centroid 

• Second Moments of Area 

• Transfer of Axis Theorem and Rotation of Axes 

• Principal Axes and Central Ellipse of Inertia. 

 

 

 

 



Introduction 1/2  
• A beam is in equilibrium under the action of external forces. 

• Each portion of the beam must be in equilibrium under the 
action of external forces. 

• If we cut the beam, the equilibrium of each portion is ensured 
by a distribution of stresses equivalent to a force S applied at the 
centroid of the cross-section and a couple whose moment is M. 

Note: 
The external forces 
are not shown!  



The  components of force S with respect to the Cartesian axes: 

• P axial force; 

• Vx shear force in the x direction; 

• Vy shear force in the y direction; 

 

The components of the moment M of the couple with respect to 
the Cartesian axes: 

• My bending moment; 

• Mz bending moment; 

• Mx torsion; 

Introduction 2/2  

P 



Axial Loading 

1 - 51 

Equilibrium: 

• The resultant of the internal forces S for an axially loaded member is 
normal  to a section cut perpendicular to the member axis. S=N. 

• 𝑀 = 0 → 𝑀𝑥, 𝑀𝑦, 𝑀𝑧 =0 ;  

• The only non-zero internal force is 𝑁. 

 

• 𝑁 > 0 tension; 𝑁 < 0 compression. 

 

 

Axial Force: 
𝑁 = 𝑃 

 
Normal stress: 

𝜎 =
𝑃

𝐴
 



 

• The Cross-section translates along the beam axis and remains normal to the 
axis. 

• The total elongation is δ 

 

Axial Strain: 
 

𝜀 =
δ

𝐿
 

 

Displacement and strains: 

Axial Loading 



Linear Elasticity 

Hooke’s law: 
𝜎 = 𝐸𝜀 

𝐸 

Constitutive Equation: 

Stress-strain Curve: Ductile Material Axial Loading 



• From the definition of strain: 

L


 

• Equating and solving for the deformation, 

AE

PL


• From Equilibrium: 
𝜎 =

𝑃

𝐴
              𝜀 =

𝑃

EA
 

• From Hooke’s Law: 

𝜎 = E𝜀         𝜀 =
𝜎

E
 

Deformation under axial loading 

Axial Loading 



Pure Bending Loading 

• The beam is subjected  to equal and 
opposite couples, whose moment is M, 
acting in the same longitudinal plane. 

 

 

 

 

 

MdAyM

dAzM

dAF

xz

xy

xx







0

0

• The internal forces in the generic cross-section 
must satisfy the condition. 

Equilibrium: 



2D Beam in pure bending: 
 

Pure Bending Loading 
 

• Cross-sections remain plane and perpendicular 
to the axis of the beam 

• a neutral surface must exist that is parallel to the 
upper and lower surfaces and for which the length 
does not change 

 

• bends uniformly to form a circular arc 

• member remains symmetric 

Displacement and Strains 1/2 

• The top outermost fibers will shorten and the 
bottom outermost fibers will elongate  



Consider a beam segment of length L. 

After deformation, the length of the neutral 
surface remains L.   

At other sections: 

 
 

mx

m

m

x

c

y

c
ρ

c

yy

L

yyLL

yL

























    or    

linearly) varies (strain     

Pure Bending Loading 
 Displacement and Strains 2/2 



• For a linearly elastic material: 

linearly) varies (stressm

mxx

c

y

E
c

y
E









• 1)  Static equilibrium: 









dAy
c

dA
c

y
dAF

m

mxx





0

0

First moment with respect to 
neutral plane is zero 

 

The neutral surface must pass 
through the centroid of the cross-
section. 

• 2) Static equilibrium: 

y
I

M

c

y

I

Mc

c

I
dAy

c
M

dA
c

y
ydAyM

x

mx

m

mm

mx

































   ngSubstituti

2

Constitutive Equation: 

0 zSdAy

Navier’s Formula 

Pure Bending Loading Navier’s Formula: 



• The maximum normal stress due to bending, 

modulus section

inertia of moment section 







c

I
W

I

S

M
c

I

M
m

• For a rectangular beam cross section, 

Ahbh
h

bh

c

I
w

6
12

6
1

3

12
1

2


• Structural steel beams (I beams and H beams) 
are designed to have a large section modulus. 

b 

A Maximum normal stress & Section Modulus: 

Pure Bending Loading 



• Deformation due to bending moment M is 
quantified by the curvature of the neutral surface 

EI

M

I

Mc

EcEcc

mm












11

Deformation under pure bending 

Pure Bending Loading 



• The eccentric loading determines an axial force 
F and a couple Pd at cross section C. 

 

• Principle of superposition: stress distribution 
due to eccentric loading is determined by 
superposing the uniform stress due to a centric 
load and the linear stress distribution due to 
pure bending 

   

I

My

A

P

xxx



 bendingcentric 

PdM

PF





Eccentric Axial Loading in a Plane of Symmetry 



• Analysis of pure bending is limited to 
members subjected to bending couples 
acting in a plane of symmetry. 

• For situations in which the bending 
couples do not act in a plane of symmetry, 
the neutral axis of the cross-section will 
not coincide with the axis of the couple (x) 
and the beam will not bend in the plane of 
the couple (y-z). 

 

• Members remain symmetric and bend in 
the plane of symmetry and the neutral axis 
of the cross-section coincides with the axis 
of the couple. 

 

Unsymmetric bending 



Principle of superposition : 

• Resolve the couple vector into components along 
the centroidal principal axes. 

 sincos MMMM yz 

• Superpose the stress distributions 

y

y

z

z
x

I

zM

I

yM


• The neutral axis is found by enforcing: 

   






tantan

sincos

y

z

yzy

y

z

z
x

I

I

z

y

I

zM

I

yM

I

zM

I

yM



 0

Unsymmetric bending 



• Consider a straight member subject to equal 
and opposite eccentric forces. 

• The eccentric force is equivalent to the system 
of a centric force and two couples. 

PbMPaM

P

zy 

 force centric 

• By the principle of superposition, the 
combined stress distribution is 

y

y

z

z
x

I

zM

I

yM

A

P


• If the neutral axis lies on the cross-section, 
it may be found from 

A

P
z

I

M
y

I

M

y

y

z

z 

General Case of Eccentric Axial Loading 



 

  00

0

00

 



 

xzxzz

xyxyy

xyxzxxx

yMdAF

dAzMVdAF

dAzyMdAF







• Distribution of normal and shearing 
stresses satisfies 

• Transverse loading applied to a beam 
results in normal and shearing stresses in 
transverse sections. 

• By reciprocity of shear stress, when 
shearing stresses are exerted on the 
vertical faces of an element, equal stresses 
must be exerted on the horizontal faces 

• Longitudinal shearing stresses must exist 
in any member subjected to transverse 
loading. 

Shear Flow on the Horizontal Face 



• For equilibrium of beam element 

 



 






A

CD

A

DCx

dAy
I

MM
H

dAHF 0

xVx
dx

dM
MM

dAyS

CD

A

z



 

• Note: 

flowshear
I

VS

x

H
q

x
I

VQ
H

z 







• Substituting: 

Shear flow 1/2 



flowshear
I

VS

x

H
q z 






• Shear flow, 

• where 

section cross full of moment second 

 above area of moment first 

'













AA

A

z

dAyI

y

dAyS

2

1

• Same result found for lower area 

HH

SS

q
I
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x

H
q











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axis neutral to

 respect  withmoment first 

'

'

0

Shear flow 2/2 



• The average shearing stress on the horizontal 
face of the element is obtained by dividing 
the shearing force on the element by the area 
of the face. 

bI

VS

xb

x

I

VS

A

xq

A

H

z

z

z

z
ave


















• On the upper and lower surfaces of the beam, 
tyx= 0.  It follows that txy= 0 on the upper and 
lower edges of the transverse sections. 

Shear stress 



• For a narrow rectangular 
beam: 

A

V

c

y

A

V

bI

VS

z

z
xy

2

3

1
2

3
2

2













max



Shear stress: Example 



Shearing Stresses in Thin-Walled Members 
• Consider a segment of a wide-flange 

beam subjected to the vertical shear V. 

• The longitudinal shear force on the 
element is 

x
I

VS
H 

It

VS

xt

H
xzzx 




 

• The corresponding shear stress is 

• NOTE: 0xy

0xz

in the flanges 

in the web 

• Previously found a similar expression 
for the shearing stress in the web 

It

VS
xy 



• The variation of shear flow across the 
section depends only on the variation 
of the first moment. 

I

VS
tq  

• For a box beam, q grows smoothly from 
zero at A to a maximum at C and C’ and 
then decreases back to zero at E. 

Shearing Stresses in Thin-Walled Members 



Torque  

   dAdFT 

• Net of the internal shearing stresses is an 
internal torque, equal and opposite to the 
applied torque 

• Although the net torque due to the shearing 
stresses is known, the distribution of the 
stresses is not 

• Unlike the normal stress due to axial loads, the 
distribution of shearing stresses due to torsional 
loads can not be assumed uniform. 

• Distribution of shearing stresses is statically 
indeterminate – must consider beam 
deformations 

Equilibrium:  



• The angle of twist is proportional to the 
applied torque and to the element length. 

L

T









• When subjected to torsion, every cross-section 
of a circular beam remains plane and 
undistorted. 

• Cross-sections of noncircular (non-
axisymmetric) beam are distorted when 
subjected to torsion (warping 
displacement). 

• Cross-sections for hollow and solid circular 
beam remain plain and undistorted because a 
circular beam is axisymmetric. 

Torque 
Displacement 



Shearing Strain 
• Consider an interior section of the beam.  As 

a torsional load is applied, an element on the 
interior cylinder deforms into a rhombus.   

 

• Shear strain is proportional to twist and radius 

maxmax    and   






cL

c


L
L


  or      

• It follows that 

• Since the ends of the element remain 
planar, the shear strain is equal to angle of 
twist. 

Torque 



J
c

dA
c

dAT max2max 



   

• Recall that the sum of the moments from 
the internal stress distribution is equal to 
the torque on the beam at the section, 

4

2
1 cJ 

 4
1

4
22

1 ccJ  
   and   max

J

T

J

Tc 
 

• The results are known as the elastic torsion 
formulas, 

• Multiplying the previous equation by the 
shear modulus 

max


 G
c

G 

max



c



From Hooke’s Law,  G , so 

The shearing stress varies linearly with the 
radial position in the section. 

Constitutive Equation: Torque 



• Recall that the angle of twist and maximum 
shearing strain are related, 

L

c
 max

• In the elastic range, the shearing strain and shear 
are related by Hooke’s Law, 

JG

Tc

G
 max

max




• Equating the expressions for shearing strain and 
solving for the angle of twist, 

JG

TL


• If the torsional loading or beam cross-section 
changes along the length, the angle of rotation is 
found as the sum of segment rotations 


i ii

ii

GJ

LT


Deformation under Torque 



• Summing forces in the x-direction on AB, 

 

 

 shear stress varies inversely with thickness 
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
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





• Compute the beam torque from the 
integral of the moments due to shear 
stress 

Thin-Walled Hollow section 


t

ds

GA

TL
24



• Angle of twist: 



Torsion of Noncircular Members 

• At large values of a/b,  the maximum 
shear stress and angle of twist for other 
open sections are the same as a 
rectangular bar. 

Gabc

TL

abc

T
3

2
2

1

max  

• For uniform rectangular cross-sections, 

• Previous torsion formulas are valid for 
circular section 

• Planar cross-sections of noncircular 
element do not remain planar and stress 
and strain distribution do not vary 
linearly 


