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Aim of the Introductory Course

The aim of these slides is to help students review some basic
concepts of structural mechanics that will be exploited during
the course of Advanced Structural Mechanics.

Outline of the Introductory Course

PART I: Cross-sectional Properties.

PART II: Solid Mechanics: Displacements and
Strains, Stress and Equilibrium, Constitutive
Equations.

PART IlI: Internal Forces in Beams: Axial Force, Bending

Moment, Shear Force, and Torque. The Euler-
Bernoulli beam model.

PART IV Analysis of Statically determinate and
indeterminate Structures.



Links and resources

Contacts:
antonio.palermo6@unibo.it

alessandro.marzani@unibo.it

christian.carloni@unibo.it

Suggested reading:
e Beer, Johnston, DeWolf, Mechanics of Materials.
* Gere and Timoshenko, Mechanics of Materials.
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PART |

Cross-sectional Properties



Outline of PART |

e Beam: Geometric Model.

* Cross-Sectional Properties:
* Area
* First Moments of Area
* Centroid
* Second Moments of Area
* Transfer of Axis Theorem and Rotation of Axes
* Principal Axes and Central Ellipse of Inertia.



Beam: Geometric Model

A beam is a structural element generated by a planar figure Q
(i.e. cross section) that moves in the space remaining normal to
the trajectory described by its centroid.
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Beam: Geometric Model

Geometric Requirements:

e (Q)(s) constant or can vary continuously:

h <1

BEAM

(Q=const

YES!

C

YES! Q(2)




Cross-sectional Properties

For any cross-section Q, it is possible to define some quantities
that are related only to the cross-section geometry.

Q Y * Area A
e Static Moment of Area

h  Centroid C

I * - e Moments and Product
| flv X of Inertia




Cross-sectional Properties

Area:
YA
A= f dA
Q)
A = [m?]
dA: Y/
dr 40
dy
7 dx

=<\

i

dA=dxdy dA=rd&dr



Cross-sectional Properties

First Moment of Area: Static Moments

Sy =fydA

YA Q
Sy = f xdA

Q




Cross-sectional Properties

Centroid:

The centroid C of a plane figure or two-
dimensional shape is the arithmetic mean
position of all the points in the shape.

The centroid C of an area is the point of
intersection of all the straight lines that
subdivide the plane figure in equal parts




Cross-sectional Properties

Centroid:
S
_ Y
Y A =Y
Sx
Yo - e =
r.
’ . Xc,Ye = L]
O‘ IXC X




Cross-sectional Properties

Static Moment & Centroid: Properties

. =
Sy and S, canbe = 0

 The static moment S is zero if calculated with respect to a
centroidal axis (i.e. the centroid lies on the axis)

 The Static Moment calculated with respect to an axis of
symmetry = 0.

* If an area has an axis of symmetry, the centroid C lies on the axis.

* If an area has two axes of symmetry, the centroid Cis located at
the intersection of the axes.

S =),; S; (domain of integration can be added: geometric
decomposition)



Cross-sectional Properties

Why is it called first moment?

Let’s assume to apply a
YA vector at C whose
- T~ magnitude is the area A
/ N of the region Q2 (the
Yol -l . C \\ dimensions of this
y vector are [L?]).
- The moment of this
s vector with respect toy

O Xc X is Ax. , which is the
static moment Sy




Cross-sectional Properties

Second Moment of Area: Moment of Inertia:
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Cross-sectional Properties

Second Moment of Area: Product of Inertia and Polar
Moment of Area
Iyy = J, xydA Product o Inertia

y A Iy = fﬂ r“dA Polar Moment of Area

I

Xy Ip = [L4]




Cross-sectional Properties

Second Moments of Area: Properties

* Iyandl, >0
¢ IO >0
* Ip = I, + I, when O is the origin of the x and y axes.

* Ly S0

* I, = 0Qif either x ory is an axis of symmetry

I = ).; I; (valid for all the Second Moments of Area)



Cross-sectional Properties

Change of coordinates
Y'A V(C)A x' = x© 4 dy’y(c)
_ (C

? y =y +d o

/dy'y C
t q =€) Note that d,r,(c) and
©) d,r . arethe
XX coordinates of the

centroid C with respect

O X to the Cartesian system
OX'y". Thus dr ) = X

and dx'x(c) — y(':



Cross-sectional Properties

Parallel Axes: Static Moment

Sy = Sx(c) + Adxrx(c) = Adxrx(c)

YA YO
Sy, — Sy(c) ~+ Ady/y(c) = Ady/y(c)

i
4. ©
/ Yy c _
S B> ()
L/ ﬂ)(c) Note that S ) = Sy(C) =0
/ X'X

O If>x'

Syr = f y'dA = j(y(c) + dxrx(c))dA =5, + Adx’x(c) = Adx’x(c)
Q

Q



Cross-sectional Properties

Transfer-of-axis Theorem: Second Moments of Area
YA YN

i
/ dy-y(c)
C ~
' ) = (C)
| e
/

Ol >+ Transfer-of-axis Theorem

le — Ix(c) + A(dx/x(C))z
2
]y, — Iy((;) + A (dy/y(C))

Loyr = Loy + Adyr 0 dyr,©



Cross-sectional Properties

Rotation of the Axes:

Y/
4 >
7y
* x' = xcosa + ysina
dA , .
Yr y' = ycosa — xsina
A ’/@ 4 L
\J | * [
|
o X X




Cross-sectional Properties

Rotation of the axes: Second Moment of Area

L, = > + > Y cos2a — xySinza
L.+1I1, I, —1
I, == > Y =X > > cos 2a + I, sin2a
I, — I,

o= sin2a + I, cosla



Cross-sectional Properties

Principal axes (1/3)
Goal: determine the value of a, for which I, and I, are
the maximum and minimum moments of inertia for the

cross section (or viceversa)

dly, _ o Al _
da da
_ 2y
tglay = Py
Note that if we enforce I, , = 0 we obtain the expression

X'y
above. Thus, when a = a4 I,, and I, attain the maximum and

minimum values (or vice versa) and simultaneously Ix,y, =0



Cross-sectional Properties

Principal axes (2/3)

With C = 0 we define &, n as the centroidal principal axes:

* I, I principal moments of inertia (minimum/maximum
o .o L C
moment of inertia or viceversa ) YN

with: <,
¢ 1577 =0

O
and:

I o+ I c—I 2
_ x(6) T74,(0) x(€) 74 (C) 2
* Iz, I, = x iw( . ) + (Ich)y<C))



Cross-sectional Properties

Principal axes (3/3): Properties

e If a figure has an axis of symmetry, one of the principal
axis is the axis of symmetry.

* Any other axis perpendicular to the first one (of
symmetry) is the second principal axis.



Cross-sectional Properties

Mohr circle:
Given the centroidal principal axes ¢, n, with I > I,

I +1, Iz—1

L, = 52 T4 EZ 1 cos2a
Ir+1, Iz—1

L, = 52 1 _ 52 1 cos2a
I — 1

Ly : 1 sin2a

Parametric equations of a circle on the plane I, I,

Note that the expressions above are written as though x and y are
two axes that rotate of an angle a with respect to the princial axes



Cross-sectional Properties
Mohr circle:

Parametric equations of a circle in the plane I, I,,.

R = I{;IT]; C = (15+I,7’0)

(a)

*A. Di Tommaso. Geometria delle Masse



Cross-sectional Properties
Radii of Gyration & Ellipse of Inertia

\ P = A

le = Apg



Cross-sectional Properties
Radii of Gyration & Ellipse of Inertia

The Ellipse of Inertia provides a graphical representation of the
inertia properties of the cross-section.

_ i ol
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Px = = I, = Ap; s ’
A

\ S (5,,My)
_ A N
I
— | — 2
Py = \ N ly = Ap; RN

*A. Di Tommaso. Geometria delle Masse



PART Il

Solid Mechanics: Displacements and
Strains, Strains and Stresses, Stresses
and Forces



Outline of PART Il

* Displacements and Strains: compatibility equations
e Strains and Stresses: constitutive equations

* Stresses and Forces: equilibrium equations



Displacements and Strains (1D)

e displacement:

u(x)

e axial strain:

A'B' — AB B

dz u(z + dz) J

A B'

il -| u(z + dz) — u(z) ~ $edz

Phillips, Wadee. Pre course Reading Solid Mechanics [1]

du(x)

€X) =—"p

different notation
du,

€14 = ——

11 dx,

dx

Note: the strain is assumed to be
positive if the material/solid
elongates and negative viceversa



Displacements and Strains (2D)

* displacement:

Uq(xq1, X2) and uy(xq, x3) %24

e axial strain:

ou 8
€11 = - § | o 421
dx o
1 A
_ auz
€22 = 54 o )
2 - . _
I
* shear strain: 1
[1]
T ou, , duq .
=——fF=0—-A1= + with: = 2€
V12 > b ox, | ox, V12 12



Displacements and Strains (3D)

e displacement:

Uq(xq, X2, x3), Ua(xq, X2, x3) and uz(xq, x5, x3)

e axial strain:

aul

611 — 6x1'

 shear strain:

€22 = _6x2’633 —

. auz Gul
)/12 o le + a.'X,'Z
_ 6u3 Bul
y13 o axl + 6x3
6u3 auz

Y23 =5+

axz 6x3

6u3

6x3

with: V12 = 2612
with: V13 = 2613

with: Y23 = 2623

Uy = 611d£81

{ Ug = Ezzd."ﬂz

_____________

U = Elgdmz €12 = 7/2

}‘—'{ / €21 = 7/2

[}
1

/o | Eiz = €21dxg
31 _______1

(b) Distortion



Displacements and Strains (3D)

The compatibility equations link displacements and strains

in 1D: in 2D: in 3D:
. dn LI I
1 dx, €11 0x, Oi » €11 0861 = 9
€Ex2 =1 0 X uz] €20 0 02 % .
2612 0 5‘ 633 a a 03 1
0x, 0Xx4. 2€15 12
2 ox, ox; 9 |lu
2613 ) X1 __ 3
2¢ 0 0 0Jx;
| €23 — 5 5
ox; . _“
L0 0x3 0x;.
\ ~ /)

In compact notation:

e=Du

|



Displacements and Strains

In 3D for a given strain tensor

€11 €12 €13
€ = |€12 €22 €23
€13 €23 €33
the principal strains €, and principal directions of strain a =

la{, a,,as], i.e. those directions in which there exist only axial strain
and no distorsions, can be found solving the eigenvalue problem:

(e—€,Na=0

€ 2nd order strain tensor

€, principal strain

a principal directions

I identity matrix quantities to be detrmined



Displacements and Strains

In 2D the principal strains and the principal directions, in the plane
X1 — X5, can be determined also as

* principal strains:

_ 2
611+622_|_ (611 €22

— 2
€1, €2 5 T N 5 ) T €12

* the angle a of the principal directions a¢, a, w.r.t. the x4, x, axes:

€1—€> €1+€2

Note: Mohr circle of radius R = and centre C =



Strains and Stresses

The constitutive equations are the relations between kinetics

(stress, stress-rate) quantities and kinematics (strain, strain-rate)
guantities for a material.

They describe mathematically the actual behavior of a material.

o A g A o A

: \ Nonlinear
Moderately from start

—— ductile (rubber,
Brittle (Al alloy) polymers)

(glass, ceramics,
concrete in tension)

>

€ € €

Uniaxial (1D) stress-strain curves



Strains and Stresses

In 3D the constitutive equations in linear elasticity read
o = Ce

where C is the Elasticity matrix, o is the vector collecting the
stress components and € is the vector of the strain components

C11 Ciz Ci3 Cis Cis Cigr€1r-

011

022 C21 Ca2 (23 Coy (o5 Cog] €22
033 _[C31 C32 (33 C34 C35 C36]f €33
012 [Cas1 Caz Caz Caq Cas  Cagl||2€12
13 Cs1 Cs; Cs3 Csy Css Cse||2€13
0231 |Cs1 Cer Ces Cea Cos Cogll2€2s-

Alike € = So, where § = C~1 is the Compliance matrix. In the
general case the material has a € matrix characterized by 36
indipendent coefficients.



Strains and Stresses

MATERIAL NAME

INDEPENDENT
COEFFICIENTS

NOTE

The material has NO planes of symmetry, i.e. the material

;FGREIEIES,LCI_ 21 properties differ in all directions. It is possible to prove that the
elasticity and compliance tensor are symmetric. The number of
ANISOTROPIC) . .
independent coefficients reduces to 21.
The material has 1 plane of symmetry . Number of coefficients
MONOCLINIC 13 reduces to 13.
The material has 3 mutually perpendicular planes of symmetry.
ORTHOTROPIC 9 This implies no interaction between normal and shear stresses and
strains. Number of coefficients reduces to 9.
TRANSVERSELY The material has one plane |.n which materlgl properties are .
ISOTROPIC 5 independent of the orientation. If x; — x5 is the plane, subscripts
1 and 2 are interchangeable. Number of coefficients reduces to 5.
The material has infinite planes of symmetry, i.e. the material
ISOTROPIC 2 properties are independent of orientation. All subscripts are

interchangeable.




Strains and Stresses

For an Isotropic material:

l-v v 1% 0 0 0
v o 1l-v v 0 0 0
E Vv v l-v 0 0 0
C=(1—2v)(l+v) 0 0 0 i(1-2v) 0 0
o 0 0 0 1(1-2v) 0

o 0 0 0 0 1(1-2v)

1 v v 0 0 0 |
—v 1 —v 0 0 0
P B e e | 0 0 0
S5=C"=3| 4 o o 21+v) 0 0
0 0 0 0 2(1+v) 0

0 0 0 0 2(1+v) |

where E is the Young’s modulus, v is the Poisson’s ratio



Stresses and Forces

Cauchy Principle states that upon any surface that divides the body,
the action of one part of the body on the other is equivalent
(equipollent) to the system of distributed forces and couples on the
surface dividing the body.

Stress Vector: A .
T(n,x) P
Body force:
f >
Surface force: X2

P X1



Stresses and Forces

The stress vector T, in general, has a component g,, along the
normal n to the surface, and two tangential components, 7. and

Ty, on the surface.
A
X3 T
P T

o,=T(n,x)n

7. =T(n,x) c X
Tp = T(n, .X') b

t=\/r§+r§




Stresses and Forces

The stress vector T can be related to the the Cauchy stress tensor

011 012 013
g = |01 Oy 033 T3 A
031 032 033 T®)

as

011 012 01311

T(n,x) =on = |021 02 023]|[N:
031 O3 O033]|N3

dm = pdV
_T(93)

.T;gj
021
. ™
Note: from the balance of angular moment it can be S 3
proved that 012=0921, 013=031 and 0,3=039, i.e. the
. . 1¢
stress tensor has 6 indipendent components. o _
L1



Stresses and Forces

The equilibrium equations link forces and stresses:

scalar equations:

on the boundary:

dive+f=0

doy; 0doyp, 0043

=0
0xq T d0x, T 0x3 th
60-12 60-22 60-23
0x4 * dx, * 0x3 th=0
doyz3 00,3 0033 B
dx4 T dx, T 0x3 T =



Stresses and Forces

In 3D for a given stress tensor
011 012 013
g = |021 032 033
031 032 033
the principal stresses g, and principal directions of stress a =

la{, a,,as], i.e. those directions in which there exist only axial stress
and no shear stress, can be found solving the eigenvalue problem:

(6 —o,Na=0

o 2nd order strain tensor

o, principal strain

a principal directions

I identity matrix quantities to be detrmined



PART Il

Internal Forces



Outline of PART IlI|

* Internal forces:
* Area
* First Moments of Area
* Centroid
* Second Moments of Area
* Transfer of Axis Theorem and Rotation of Axes
* Principal Axes and Central Ellipse of Inertia.



Introduction 1/2

e A beam is in equilibrium under the action of external forces.

e Each portion of the beam must be in equilibrium under the
action of external forces.

e |f we cut the beam, the equilibrium of each portion is ensured
by a distribution of stresses equivalent to a force S applied at the
centroid of the cross-section and a couple whose moment is M.

Note:
The external forces
are not shown!




Introduction 2/2

The components of force S with respect to the Cartesian axes:

e P axial force;

T, A
y L
e \V, shear force in the x direction; ~
° . . . . T
V, shear force in the y direction,; A//\\Ax

The components of the moment M of the couple with respect to
the Cartesian axes:
My 2

* M, bending moment; <
~——
* M, bending moment; o~ M
X
e M, torsion; &/\}




Axial Loading

Equilibrium:

e The resultant of the internal forces S for an axially loaded member is
normal to a section cut perpendicular to the member axis. S=N.

« M =0- My,M,M,=0;

e The only non-zero internal force is N. B | B
e N > 0 tension; N < 0 compression. I
Axial Force:
N=P
C Y
Normal stress: / d C
P A }
o=
A P



Axial Loading

Displacement and strains:

e The Cross-section translates along the beam axis and remains normal to the

axis.
e The total elongation is 6 B X
Axial Strain:

L

S

E==

L
C Y




AX|aI Loadlng Stress-strain Curve: Ductile Material

Constitutive Equation: 60
oy| A Rupture
i P B 3
40
Oy
S OB
2
Fld{ Strain-hardening Necking
| { |y
0.02 0.2 0.25

(a) Low-carbon steel

Linear Elasticity

Hooke’s law:

Fig. 2.8 Test specimen with tensile load. o=Fe¢



Axial Loading

Deformation under axial loading

From Hooke’s Law:

E o
O = L¢& E ==
E
From Equilibrium:
=21 e =L
A " EA

From the definition of strain:

o
E=—
L
Equating and solving for the deformation,
s_PL

AE



Pure Bending Loading

Equilibrium:

e The beam is subjected to equal and
opposite couples, whose moment is M,
acting in the same longitudinal plane.

e The internal forces in the generic cross-section
must satisfy the condition.

Fy=[oy dA=0
My =[zoy dA=0
M, =[-yo, dA=M



Pure Bending Loading

Displacement and Strains 1/2

2D Beam in pure bending:

e member remains symmetric

e bends uniformly to form a circular arc

e Cross-sections remain plane and perpendicular
to the axis of the beam

(a) Longitudinal, vertical section

(plane of symmetry) e The top outermost fibers will shorten and the
bottom outermost fibers will elongate

a neutral surface must exist that is parallel to the
upper and lower surfaces and for which the length
does not change

(b) Longitudinal, horizontal section



Pure Bending Loading

Displacement and Strains 2/2

Consider a beam segment of length L.

After deformation, the length of the neutral
surface remains L.

At other sections:

L'=(p-y)0
S=L'-L=(p-y)0-po=-y0

=—=——=—= (strainvaries linearly)

Yy C
g =— Of p=—
gm
Neutral
axis g, = 'y 6
\ C
z




Pure Bending Loading  navier's formuta:

Constitutive Equation:
e For a linearly elastic material:

. =E&, y
C
:—%am (stress varies linearly) ::_‘
e 1) Static equilibrium: e 2) Static equilibrium:
_0- (.Y _ _ y
I:x_O_J.O-x dA_J Co-m dA M—j—yax dA—j—y(—EijdA
0=—G—mjydA M:G—mjysz:Gml
C C C
: : Mc
First moment with respect to O ==
neutral plane is zero
[yda=s, =0

The neutral surface must pass
through the centroid of the cross-
section.




Pure Bendlng Loading

Maximum normal stress & Section Modulus:

e The maximum normal stress due to bending,

o,=—C= =
| =section moment of inertia

I .
W = — = section modulus
C

e For a rectangular beam cross section,

b
w:'—:%bhg 1ph? =1 Ah
c h/2

YA e Structural steel beams (I beams and H beams)
are designed to have a large section modulus.




Pure Bending Loading

Deformation under pure bending

e Deformation due to bending moment M is

” qguantified by the curvature of the neutral surface

o C
Gm

m

P 1 Mc
C Ec Ec |

1
Z = — =
yo
Neutral — M

; p
surface / Z E

-~
-
-~




Eccentric Axial Loading in a Plane of Symmetry

e The eccentric loading determines an axial force
F and a couple Pd at cross section C.
F=P
M = Pd
e Principle of superposition: stress distribution
due to eccentric loading is determined by
) superposing the uniform stress due to a centric
load and the linear stress distribution due to
pure bending

Ox = (JX )centric + (GX )bending




Unsymmetric bending

e Analysis of pure bending is limited to
members subjected to bending couples
acting in a plane of symmetry.

e Members remain symmetric and bend in
the plane of symmetry and the neutral axis
of the cross-section coincides with the axis
of the couple.

For situations in which the bending
couples do not act in a plane of symmetry,
the neutral axis of the cross-section will
not coincide with the axis of the couple (x)
and the beam will not bend in the plane of
the couple (y-z).




Unsymmetric bending

Principle of superposition :

e Resolve the couple vector into components along
the centroidal principal axes.

M, = M cosé My =Msing

e Superpose the stress distributions

M.,z
Gx :_Iv:zy_|_ Iy

z y

e The neutral axis is found by enforcing:




General Case of Eccentric Axial Loading

e Consider a straight member subject to equal
and opposite eccentric forces.

e The eccentric force is equivalent to the system
of a centric force and two couples.
P =centricforce

My=Pa M,=Pb

e By the principle of superposition, the
combined stress distribution is
M, z
oy = P M,y LY
AL,

y

e If the neutral axis lies on the cross-section,
2 it may be found from




Shear Flow on the Horizontal Face

e Transverse loading applied to a beam
results in normal and shearing stresses in

transverse sections.

e Distribution of normal and shearing
stresses satisfies

Fe=JoxdA=0 My =[(yry, — 274y JdA=0
Fy:ITXydAZ—V My ZIZGXdAIO
F, =]74,dA=0 M, =[(-yoy)=0

e By reciprocity of shear stress, when
shearing stresses are exerted on the
vertical faces of an element, equal stresses
must be exerted on the horizontal faces

e Longitudinal shearing stresses must exist
in any member subjected to transverse

loading.




Shear flow 1/2

P, [P,
- w Y
\AAAAAAAL o
B Z_E} e For equilibrium of beam element

ZFX =0=AH +J-(O-C _GD)dA
A

F‘ X —
AH :—MDI_MC jydA
A

a

......... - /:Q
g_y:}_cx . g; Tn .. ® Note:

B \ SZ:jydA

A
W My — M, =d—MAx =V AX
Ve Vp dx
' ' e Substituting:
CY YD
o¢ dA : | 3/0',-)(//\ AH Z\QAX

S AN |

_AH VS,

=shear flow

CAx




Shear flow

2/2

e Shear flow,

_AH VS,
AX

= shear flow
e where

gyff?i lF e

SZ:IydA
A

= first moment of area above y,
| = j y2dA

A+A'
= second moment of full cross section

e Same result found for lower area

,_AH'_\/_S'__ ,
AX I

— ~— Ax
C : iD *
] 2 NPT WETH N (. C
UIT ;
c" D"

S+S'=0

= first moment with respect
to neutral axis
AH'=-AH



Shear stress

— ~— Ax

2 f e The average shearing stress on the horizontal
—y_lj__c_’_““l_)’__——_______ ;j_" face of the element is obtained by dividing
. the shearing force on the element by the area
c' D" of the face.
. AH _QAX :VSZ AX
Y AA AA |, bAX
VS,
" Lb

4

e On the upper and lower surfaces of the beam,
t,=0. Itfollows that t, = 0 on the upper and
lower edges of the transverse sections.




Shear stress: Example

22

e For a narrow rectangular
beam:

z

’Z'X =
Y ILb 2A C

z

VS, 3V(, y?
2



Shearing Stresses in Thin-Walled Members

e Consider a segment of a wide-flange
beam subjected to the vertical shear V.

e The longitudinal shear force on the
element is

AH :VI—SAX

e The corresponding shear stress is
_AH VS
“tAx It

Z-ZX =T

e Previously found a similar expression
for the shearing stress in the web

VS

Py It

 NOTE: 74y ~0 intheflanges
7v; 0 inthe web




Shearing Stresses in Thin-Walled Members

e The variation of shear flow across the
section depends only on the variation
of the first moment.

Txy

Vs

q=rt I

e For a box beam, g grows smoothly from
zero at A to a maximum at C and C’ and
then decreases back to zero at E.




Torque

Equilibrium:

e Net of the internal shearing stresses is an
internal torque, equal and opposite to the
applied torque

T=]pdF =[p(z dA)

e Although the net torque due to the shearing
stresses is known, the distribution of the
stresses is not

e Distribution of shearing stresses is statically
indeterminate — must consider beam
deformations

e Unlike the normal stress due to axial loads, the
distribution of shearing stresses due to torsional
loads can not be assumed uniform.




Torque
Displacement

The angle of twist is proportional to the
applied torque and to the element length.

¢ocT
@ o< L

When subjected to torsion, every cross-section
of a circular beam remains plane and
undistorted.

Cross-sections for hollow and solid circular
beam remain plain and undistorted because a
circular beam is axisymmetric.

Cross-sections of noncircular (non-
axisymmetric) beam are distorted when
subjected to torsion (warping
displacement).



Torque

Shearing Strain

e Consider an interior section of the beam. As
a torsional load is applied, an element on the
interior cylinder deforms into a rhombus.

* Since the ends of the element remain
planar, the shear strain is equal to angle of
twist.

¢ |t follows that

Ly =pgp or 7=p—|_¢

e Shear strain is proportional to twist and radius

(o30) o,
=— and y="
7 max L /4 C7/max




Constitutive Equation:

e Multiplying the previous equation by the
shear modulus

Gy = €G7max

From Hooke’s Law, 7=Gy, so
Yo,

T=—7T
max
C

The shearing stress varies linearly with the
radial position in the section.

e Recall that the sum of the moments from
the internal stress distribution is equal to
the torgue on the beam at the section,

T =[prdA=max 52 g - fmax g
C C

e The results are known as the elastic torsion

formulas,

Tp

rmaxz—c and 7 =-—
J J



Deformation under Torque

Recall that the angle of twist and maximum
shearing strain are related,

Ymax = %
In the elastic range, the shearing strain and shear
are related by Hooke’s Law,
_ Tmax _ 1C
Ymax = G IG
Equating the expressions for shearing strain and
solving for the angle of twist,
TL
TS
If the torsional loading or beam cross-section
changes along the length, the angle of rotation is
found as the sum of segment rotations

TiL
=y
’ i JiGi




Thin-Walled Hollow section

e Summing forces in the x-direction on AB,
> Fx = 0=7a(tarx)-7g(tgAX)
TAtAZ TBtB: Tt = gq= shear flow

shear stress varies inversely with thickness

e Compute the beam torque from the
integral of the moments due to shear
stress

dMg = pdF = pz(tds)=g(pds)=2qdA
T ={dMg =§2qdA=29A

-
T=—-
2tA
e Angle of twist:
TL ds

T4AGTt




Torsion of Noncircular Members

TABLE 3.1. Coefficients for
Rectangular Bars in Torsion
a/b c, c,
1.0 0.208 0.1406
T 1.2 0.219 0.1661
i 1.5 0.231 0.1958
2.0 0.246 0.229
2.9 0.258 0.249
3.0 0.267 0.263
4.0 0.282 0.281
5.0 0.291 0.291
10.0 0.312 0.312
00 0.333 0.333
‘ \ /
=9 4_1} a T

e Previous torsion formulas are valid for

circular section

Planar cross-sections of noncircular
element do not remain planar and stress
and strain distribution do not vary
linearly

For uniform rectangular cross-sections,

At large values of a/b, the maximum
shear stress and angle of twist for other
open sections are the same as a
rectangular bar.



