Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

Introduction to Econometrics (Part. III)

Giovanni Angelini

Rimini, 9 September 2013 - 19 September 2013

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing
Outline					

- Time series analysis
- Model
- OLS estimation
- Testing linear hypotheses

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

- ▶ Henceforth we use the index *t* instead of *i* to denote 'time'.
- Let y_t be a scalar (stochastic) variable of interest.
 Endogenous variable.
- Let x_t a f × 1 vector of (stochastic)
 contemporaneous explanatory variables. These are variables that, according to out theory of view of the phenomenon under investigation, have a direct impact on y_t.
- ► The variables y_t and x_t are observed at time t = 1, 2, ..., T, so the available data (time series) are:

 y_1, y_2, \dots, y_T $x_{1,} x_2, \dots, x_T.$

Model for 'Investment' in USA

Dataset:

- i: investment (real investment)
- ► y:GDP
- R: long term interest rate
- ff: funds rate
- π: inflation rate
- Expecially in macroeconomics the variables are non stationary. Is necessary to trasform the nonstationary variables in stationary variables before estimation.

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

Example:

Can we see the non-stationary graphically?

- 1. Investment
- 2. First Difference on Investment
- 3. GDP
- 4. First Difference on GDP
- 5. Federal Funds Rate Inflation

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

• Formally, the process X_t is Covariance Stationary if:

$$E(X_t) = \mu_X < \infty$$

$$Cov(X_t, X_{t-k}) = E[(X_t - \mu_X) (X_{t-k} - \mu_X)']$$

does not depend on t

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

Now we can assume that all the variables in our model are stationary, we have the relationship of the form:

Where:

- β_i , i = 0, 1, 2, 3, 4 are the parameters of interest
- *u_t* is a stochastic disturbance term

Giovanni Angelini

Int	troduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

- u_t is a (stochastic) disturbance term with the following properties:
 - $E(u_t) = 0$ for each t (non-systematic disturbance);
 - $Cov(u_t, u_{t-h}) = 0$ for h = 1, 2, ... (serial uncorrelation);
 - $Var(u_t) = E(u_t^2) = \sigma_u^2$ for eact t (homoskedasticity).
- The term u_t is called a scalar, $u_t \sim WN(0,\sigma_u^2)$.
- The model will be denoted as dynamic linear regression model.
- Also known as ADL model, where A=Autoregressive, D=distributed L=lags.

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

Hoti	mat	non
ட்ப	IIIau	

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DI(-1)	-0.316714 0.222151	0.139916	-2.263611 3.718132	0.0246
DY	1.438749	0.118686	12.12236	0.0000
DY(-1)	0.490749	0.153296	3.201323	0.0016
FF_INF(-1)	-0.440921	0.157793	-2.032320	0.0050
R-squared	0.632582	Mean depend	lent var	0.335439
Adjusted R-squared	0.626021	S.D. depende	entvar	2.453241
S.E. of regression	1.500251	Akaike info cr	iterion	3.670734
Sum squared resid	504.1687	Schwarz crite	rion	3.745706
Log likelihood	-415.2990	Hannan-Quin	n criter.	3.700980
F-statistic	96.41492	Durbin-Watso	on stat	2.067095
Prob(F-statistic)	0.000000			

Giovanni Angelini

Consider as an example, the model

$$y_t = \beta_0 + \beta_1 y_{t-1} + \delta z_t + u_t$$

where z_t is a scalar.

Question 1: which is the instantaneous impact of z on y? Answer: it is $\delta := \frac{\partial y_t}{\partial z_t}$. **Question 2:** which is the impact of impact of z on y after one period?. Answer: you are looking for

$$\frac{\partial y_{t+1}}{\partial z_t}$$
 impact multiplier after one period

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing
•	Now $y_{t+1} =$	$\beta_0 + \beta_1 y$	$v_t + \delta \ z_{t+1} + u_{t+1}$	-1	
	hence $\frac{\partial y_t}{\partial z}$	$\frac{+1}{2t} := \beta_1 \frac{\hat{a}}{\hat{c}}$	$\frac{\partial y_t}{\partial z_t} + \delta \ \frac{\partial z_{t+1}}{\partial z_t}$		
		$:=\beta_1\delta +$	$-\delta \frac{\partial z_{t+1}}{\partial z_t}.$		
	Assuming that $\frac{\partial z_{t+1}}{\partial z_t}$:=	= <i>c</i> =const	t,		
	$\frac{\partial y_{t+1}}{\partial z_t} := \delta(\beta_1 + c)$) impact	t multiplier after	one period.	
•	In general, we can cor	npute			

$$\frac{\partial y_{t+h}}{\partial z_t}$$
 impact multiplier after *h* periods.

Question 3: which is the long run impact of z on y ? Answer: you are looking for:

$$\frac{\partial E(y_t)}{\partial E(z_t)}$$
 long run multiplier.

Applying the expectations operator to both sides of

$$y_t = \beta_0 + \beta_1 y_{t-1} + \delta \ z_t + u_t$$

gives

$$E(y_t) = \beta_0 + \beta_1 E(y_{t-1}) + \delta E(z_t).$$

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

Because of the stationarity assumption E(y_{t-1}) = E(y_t), hence:

$$E(y_t) = \frac{\beta_0}{(1-\beta_1)} + \frac{\delta}{(1-\beta_1)} E(z_t)$$

which implies

$$\frac{\partial E(\mathbf{y}_t)}{\partial E(\mathbf{z}_t)} {:=} \frac{\delta}{(1-\beta_1)} \quad \text{long run multiplier}.$$

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

We can compact the ADL model in a more familiar form:

$$y_t = eta' x_t + u_t$$
 , $u_t \sim \textit{WN}(0, \sigma_u^2)$, $t = 1, ..., T$

where:

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} \quad , \quad x_t = \begin{pmatrix} 1 \\ \bigtriangleup i_{t-1} \\ \bigtriangleup y_t \\ \bigtriangleup y_{t-1} \\ ff_{t-1} - \pi_{t-1} \end{pmatrix} \text{ are } 5 \times 1$$

• The unknown parameters are $\theta = (\beta', \sigma_u^2)'$,

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

Our intrepretation of the dynamic regression model reamins the same:

$$y_t = E(y_t \mid x_t) + u_t$$
 , $t = 1, ..., T$

where

$$E(y_t \mid x_t) := \beta' x_t.$$

In other words, we condition our explanation of the endogenous variable y_t with respect to a set of stochastic variables x_t and, at the same time, assume that E(y_t | x_t) be linear !

Compact Representation

$$y_{T\times 1} = X_{T\times k} \frac{\beta}{k\times 1} + u_{T\times 1}, \quad E(uu') = \sigma_u^2 I_T$$

• Vector of unknown parameters: $\theta = (\beta', \sigma_u^2)'$.

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing
OLS					

Objective function:

$$Q(\theta) = \frac{1}{\sigma_u^2} \sum_{t=1}^T (y_t - x_t' \beta)^2 \equiv \frac{1}{\sigma_u^2} (y - X \beta)' (y - X \beta).$$

• OLS estimator of β is obtained by solving the problem

 $\min_{\beta} Q(\theta)$

i.e. the OLS estimator of β is the vector that solves:

$$\hat{eta}_{OLS} = rg\min_eta Q(heta).$$

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

Solution to first order conditions leads us to

$$\hat{\beta}_{OLS} = \left(\sum_{t=1}^{T} x_t x_t'\right)^{-1} \left(\sum_{t=1}^{T} x_t y_t\right) \equiv \left(X'X\right)^{-1} \left(X'Y\right)$$

whereas the estimator of σ_u^2 is obtained indirectly

$$\hat{\sigma}_u^2 = rac{1}{T-k} \left(\sum_{t=1}^T \hat{u}_t^2
ight) = rac{1}{T-k} \hat{u}' \hat{u}$$

where $\hat{u}_t = y_t - x_t' \hat{\beta}$, $\ t=1,...,\,T$ or, alternatively, $\hat{u} = (y - X \ \hat{\beta}).$

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

- Are the estimators of β and σ_u^2 correct ? $E(\hat{\beta}_{OLS})=\beta$, $E(\hat{\sigma}_u^2)=\sigma_u^2$?? (if yes, under which conditions ?)
- Consider that

$$\hat{\beta}_{OLS} := (X'X)^{-1}X'[X\beta + u] = \beta + (X'X)^{-1}X'u$$

and

$$E(\hat{\beta}_{OLS}) := E_X \left(E\left(\hat{\beta}_{OLS} \mid X\right) \right).$$

• Likewise,
$$E(\hat{\sigma}_u^2) := E_X \left(E \left(\hat{\sigma}_u^2 \mid X \right) \right)$$
.

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

• Estimator of β .

$$E\left(\hat{\beta}_{OLS} \mid X\right) = \beta + (X'X)^{-1}X'E\left(u \mid X\right).$$

Hence, if $E(u \mid X) = 0_{n \times 1}$, one has

$$E\left(\hat{\beta}_{OLS} \mid X\right) = \beta$$

$$\Rightarrow E(\hat{\beta}_{OLS}) := E_X \left(E\left(\hat{\beta}_{OLS} \mid X\right) \right) = E_X \left(\beta\right) = \beta,$$

the OLS estimator is correct (for cross-section data).

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

Note that for Time-Series data E (u | X) ≠ 0_{n×1} hence the estimator is no longer correct (it happens in the regression model with time series data in which regressors include lags of y).

Testing

H1: correct specification All underlying assumptions are fulfilled.

H2: stationarity and ergodicity The stochastic process that generates $w_t = (y_t, z'_t)'$ is covariance stationary and ergodic.

Then

P1: Consistency

$$\hat{\beta}_{OLS} \rightarrow_{P} \beta$$

P2: Asymptotic Normality

$$T^{1/2} \left(\hat{\beta}_{OLS} - \beta \right) \rightarrow_D N(0_{k \times 1}, \sigma_u^2 \Sigma_{xx}^{-1})$$

where $\Sigma_{xx} = E(x_t x_t')$.

Giovanni Angelini

Testing

Observe that

$$\hat{u}_t = (y_t - x_t \hat{eta}'_{OLS} \) \ o_{
m p} \ (y_t - x_t eta') = u_t$$
 , $t=1,...,T$

hence

$$\hat{u}_t^2 o_p u_t^2$$
 , $t=1,...,T$

which implies that

$$E(\hat{u}_t^2) \approx E(u_t^2)$$
 for large T .

Therefore, under H1 and H2:

$$\hat{\sigma}_u^2 = \frac{1}{T-k} \left(\sum_{t=1}^T \hat{u}_t^2 \right) \to_p E(\hat{u}_t^2) = E(u_t^2) = \sigma_u^2$$

that means that if $\hat{\beta}_{OLS}$ is consistent for β also $\hat{\sigma}_u^2$ is consistent for σ_u^2 !

Giovanni Angelini

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

• Which is the variance of $\hat{\beta}_{OLS}$?

$$\begin{aligned} \text{/ar} \left(\hat{\beta}_{OLS} \mid X \right) &= \text{Var} \left(\beta + (X'X)^{-1}X'u \mid X \right) \\ &= \text{Var} \left((X'X)^{-1}X'u \mid X \right) \\ &= (X'X)^{-1}X' \left(\sigma_{u}^{2}I_{n} \right) X (X'X)^{-1} \\ &= \sigma_{u}^{2} (X'X)^{-1}. \end{aligned}$$

- \blacktriangleright Why do we care about the covariance matrix of the estimator $\hat{\beta}_{OLS}$?
- Look again at the output:

Introduction	Dynamic Regression Model	Example	Dynamic multiplier	Representation	Testing

Estimation

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.316714	0.139916	-2.263611	0.0246
DI(-1)	0.222151	0.059748	3.718132	0.0003
DY	1.438749	0.118686	12.12236	0.0000
DY(-1)	0.490749	0.153296	3.201323	0.0016
FF_INF(-1)	-0.446921	0.157793	-2.832328	0.0050
R-squared	0.632582	Mean depend	lent var	0.335439
Adjusted R-squared	0.626021	S.D. depende	ent var	2.453241
S.E. of regression	1.500251	Akaike info cr	iterion	3.670734
Sum squared resid	504.1687	Schwarz crite	rion	3.745706
Log likelihood	-415.2990	Hannan-Quin	n criter.	3.700980
F-statistic	96.41492	Durbin-Watso	on stat	2.067095
Prob(F-statistic)	0.000000			

Giovanni Angelini

Because it is fundamental to make inference !

$$t - statistic = rac{coefficient}{s.e.(coefficient)}$$

- In this way we can test if the coefficient is statistically different from 0.
- Because it can be proof that t-statistic is distribuited like a t(t k). T-distribution is approximatively a N(0, 1) distribution for large sample.
- Comparing the value obtained for the t-statistic and the asymptotic distribution we can decide if a coefficient is statistically different from 0.