DGPs			
	The Empi	rical Validatio	

The Empirical Validation of Agent Based Models Lecture #3

Domenico Delli Gatti

イロン イ団ン イヨン イヨン

Domenico Delli Gatti ABM Lecture#3

	DGPs		
Outline			

- What is validation?
- Data Generating Processes
 - The real-Data Generating Process (rDGP)
 - The model-Data Generating Process (mDGP)

- Internal validity
- Sensitivity analysis
- Calibration
- Stylized facts

- The main modeling problem in ABMs is the choice of parameter values, initial conditions and stochastic disturbances
- Such a choice is related to the empirical validation of the model, that is the capability of the model to reproduce the empirical evidence, both at the micro, cross-sectional and macro level

	DGPs		
DGPs			

- Given a certain configuration of parameter values, initial conditions and stochastic disturbances, the ABM is used to produce simulated or artificial data
- Therefore the ABM provides a model-Data Generating Process (mDGP)
- The mDGP must be compared with the real world-Data Generating Process (rDGP)
- The empirical validation of an ABM consists in checking whether the output of mDGP resembles real world empirical observations, i.e. observations drawn from the rDGP
- If not, the choice of parameter values, initial conditions and stochastic disturbances should be reconsidered...

・ロト ・同ト ・ヨト ・ヨト

	DGPs		
rDGP			

- rDGP generates *true* microeconomic data *z_{it}* characterizing agent *i* in a population indexed by *i* ∈ *I* over a given sample period 1 < *t* < *T*
- These data can be visualized as arranged in a matrix. Each row is a time series concerning the i-th individual. Each column is a cross section of the data at a given point in time
- Aggregating z_{it} over I we obtain the macroeconomic data Z_t ("from the bottom up")
- We can also compute cross sectional statistics, the cross sectional mean z_t and variance V_t for example

DGPs		

The matrix of real data						
$i\downarrow$, $t\rightarrow$	1	2	3			
1	<i>z</i> ₁₁	<i>z</i> ₁₂	<i>z</i> ₁₃			
2	<i>z</i> ₂₁	<i>z</i> ₂₂	<i>z</i> ₂₃			
Macro variable	Z_1	Z_2	Z_3			
cross-sectional statistics	z_1 , V_1	z_2, V_2	<i>z</i> ₃ , <i>V</i> ₃			

・ロト・(型ト・(ヨト・(型ト・(ロト

Domenico Delli Gatti

ABM_Lecture#3

Given the parameters, the initial conditions and the realizations of the random variables that define the shocks (random seeds), running the code the ABM generates simulated or artificial microeconomic data x_{it} and, through aggregation, the macroeconomic data X_t. These data can be visualized as arranged in a matrix

- For instance, let x_{it} be the production of consumption goods by firm i at time t. This is a cell in a matrix describing the micro-production behaviour of firms over the period $T^* < t < T$.
- The modeller can compute, for example, the time series of the cross sectional mean x_t and cross sectional variance V_t of production of consumption goods

DGPs		

The matrix of simulated data (for a certain run)						
$i\downarrow$, $t ightarrow$	1	2	3			
1	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃			
2	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃			
Macro variable	X_1	X_2	<i>X</i> ₃			
cross-sectional statistics	x_1, V_1	<i>x</i> ₂ , <i>V</i> ₂	<i>x</i> ₃ , <i>V</i> ₃			

・ロト・(型ト・(ヨト・(型ト・(ロト

Domenico Delli Gatti

- The real system is assumed to be ergodic, i.e to self-organize, after a transition period, into a quasi-stationary long run equilibrium. The mDGP therefore must be (sufficiently) stationary for all t > T* (where T* are transients).
- If it isn't, the parameter configuration should be changed (*calibration*) until the mDGP stabilizes

- Due to the stochastic component of the model (random seed), there will be one x_{it} and one X_t for each run. In other words, there will be a run for each realization of the random variables that defines the shocks
- Denote the time series of the cross sectional mean and variance for run m with x_t^m and $V_t^{x,m}$, m = 1, 2, ...M
- After M realization of the shock and therefore M runs we have M time series of x^m_t and V^{×,m}_t
- Therefore, for each period, we have a distribution of M cross sectional means x^m_t and variances V^{x,m}_t

DGPs	Internal validity		

The matrix of simulated data (run <i>m</i>)						
$i\downarrow$, $t ightarrow$	1	2	3			
1	<i>x</i> ₁₁ ^{<i>m</i>}	<i>x</i> ₁₂ ^{<i>m</i>}	<i>x</i> ^{<i>m</i>} ₁₃			
2	<i>x</i> ₂₁ ^{<i>m</i>}	<i>x</i> ₂₂ ^{<i>m</i>}	x ^m ₂₃			
Macro variable	X_1^m	X_2^m	<i>X</i> ₃ ^{<i>m</i>}			
cross-sectional statistics	x_1^m, V_1^m	x_2^m, V_2^m	x_3^m, V_3^m			

Domenico Delli Gatti

ABM_Lecture#3

Internal validity (cont'd)

- We can compute the moments of these distributions, for instance $\bar{x}_t := \langle x_t^m \rangle, \bar{V}_t := \langle (x_t^m - \bar{x}_t)^2 \rangle$
- \mathbf{x}_t is the mean of the cross-sectional means generated by the runs (cross-simulations mean); \bar{V}_t is the variance of the cross-sectional means generated by the runs (cross-simulations variance)

Internal validity (cont'd)

- If the cross-simulations variance is "small", we can deem the result essentially independent of the random seed
- In other words, the model is robust wrt changes of the random seed
- In this case the model is considere internally valid

- For each possible set of parameters and initial conditions, there will be a specific \bar{x}_t and \bar{V}_t
- For instance for the set A we get $\bar{x}_t^A = \langle x_t^{A,m} \rangle$, $\bar{V}_t^A = \langle (x_t^{A,m} - \bar{x}_t^A)^2 \rangle$
- \$\bar{x}_t^A\$ is the cross-simulations mean generated by the set A; \$\bar{V}_t^A\$ is the cross-simulations variance generated by the set A
- Therefore, exploring the space of parameter configurations and initial conditions (sets A,B,C etc) through Monte Carlo simulations, we generate a distribution of x
 _t (x
 _t^A, x
 _t^B, x
 _t^C, ...) which helps analyzing in depth the behaviour of the mDGP.

- \hat{x}_t is the *cross-configurations mean*, i.e. the mean of the cross-simulations means \bar{x}_t^A , \bar{x}_t^B , \bar{x}_t^C generated by the different sets of parameters
- \$\hat{V}_t\$ is the cross-configurations variance, i.e. the variance of the cross-simulations means \$\bar{x}_t^A\$, \$\bar{x}_t^B\$, \$\bar{x}_t^C\$ generated by the different sets of parameters

Sensitivity analysis (cont'd)

- The modeler looks for a sample of \bar{x}_t fairly *stable* (low cross-configurations variance), and as *close* as possible to the corresponding statistics generated by rDGP
- This validation exercise can be thought of as a way of calibrating the model in an optimal way, i.e. minimizing the distance between the simulated and the real data.

The indirect calibration approach

- Identification of essential stylized facts the modeller wants to reproduce/explain
- 2 Development of an ABM capable of *replicating* the stylized facts
- **3** Use of empirical evidence on stylized facts to *restrict the space of parameters and initial conditions* of the ABM (for example if the mDGP is non stationary)
- 4 Analysis of of emergence of new stylized facts

- irregular oscillatory behaviour of GDP, unemployment rate, inflation rate etc.
- co-movements: productivity is pro-cyclical, unemployment rate anti-cyclical etc.
- dynamics of leverage, bankruptcies
- Phillips curve
- Okun's law
- Beveridge curve

Stylized facts: Cross sectional evidence

firms' size distribution is log-normal or power law

< 17 ▶

firms' growth rate distribution is tent shaped