Metodi di Caratterizzazione Strutturale (4 CFU, 32 ore, 1° ciclo)

CHEM-05/A - Chimica Organica

Elisabetta Mezzina

<u>elisabetta.mezzina@unibo.it</u>

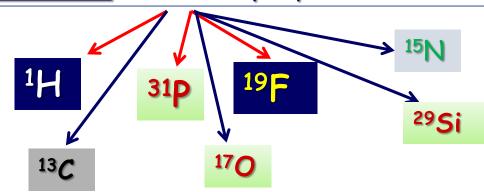
Dipartimento di Chimica 'G. Ciamician'

U.E.4 Navile-Via Gobetti 85

tel. 051 2095692

Caratterizzare una molecola

Spettroscopia NMR e Spettrometria di Massa sono fra i metodi di analisi più utilizzati per raggiungere questo obiettivo in quanto le applicazioni principali di tali tecniche sono orientate soprattutto all'analisi chimica delle molecole organiche e delle macromolecole biologiche.


Il corso ha lo scopo di approfondire i vari aspetti di queste tecniche spettroscopiche che sono state illustrate nel corso di Caratterizzazione Strutturale di Composti Organici e che rappresentano fra i più utilizzati e versatili mezzi che tutti chimici abbiano a disposizione per riconoscere strutture complesse.

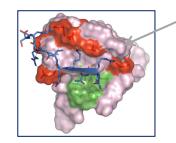
Spettroscopia NMR

· La spettrometria NMR è una tecnica di indagine analitica utilizzata in tutte le Università, all'interno di centri di ricerca pubblici e privati, in molti contesti industriali, tra i quali spicca il settore farmaceutico, all'interno di laboratori di controllo qualità e analisi chimica.

· <u>Il principale vantaggio</u> della tecnica NMR è la possibilità di effettuare indagini per lo più dirette che si configurano come "non distruttive".

I campi magnetici utilizzati grazie all'utilizzo di <u>magneti</u> <u>superconduttori</u> sono molto più potenti




Il campo magnetico è fornito da un criomagnete superconduttore.

Spettroscopia NMR

È una tecnica potente e veloce per identificare prodotti di reazione o composti organici incogniti.

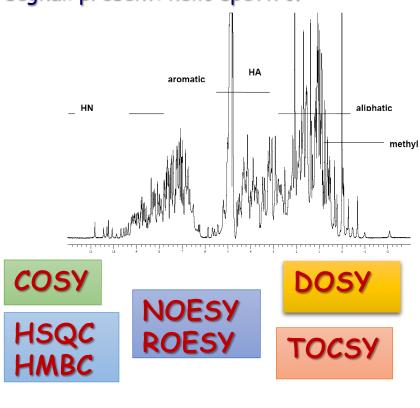
✓ Grazie allo sviluppo delle sequenze di impulsi è possibile acquisire spettri NMR di complessi macromolecolari quali enzima-substrato che evidenziando il riconoscimento molecolare al livello atomico, possono fornire informazioni utili sulla individuazione dei siti di legame per applicazioni nel campo della progettazione di nuovi farmaci.

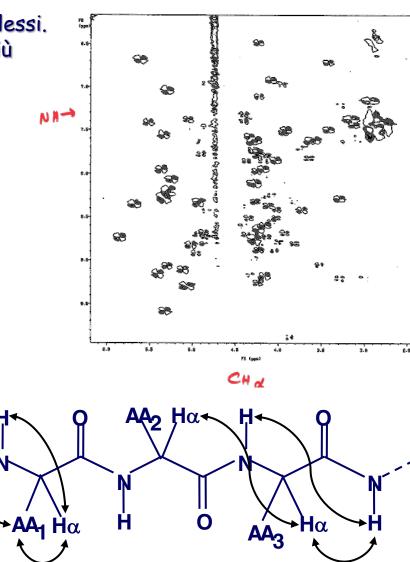
Strumentazione NMR dei Dipartimenti Ciamician, FaBit e Toso Montanari

Attualmente sono disponibili presso il Distretto Navile di Via Gobetti 85:

- il nuovo spettrometro (600 MHz) con probe criogenico multinucleare ad alta sensibilità
- due spettrometri 400 MHz.
- uno spettrometro 600 MHz.
- il nuovo spettrometro stato solido

Questi spettrometri possono acquisire spettri NMR su numerosi tipi di nuclei e a temperature comprese tra -150 e +150°C. Gli spettrometri sono dotati di vari tipi di sonde di acquisizione per rispondere alle varie esigenze dei gruppi di ricerca.




Il Probe o sonda di acquisizione contiene la bobina che fornisce il campo magnetico che permette la transizione NMR

NMR: tecniche bidimensionali

Molecole di grandi dimensioni danno origine a spettri molto complessi. L'utilizzo delle tecniche bidimensionali permette di individuare più facilmente i molti segnali presenti nello spettro.



L'analisi delle correlazioni fra i vari nuclei presenti in una macromolecola permette di ricostruire la disposizione dei vari atomi nello spazio.

Spettrometria di Massa per molecole complesse

Lo sviluppo di metodologie di ionizzazione blanda in Spettrometria di massa ha permesso lo studio di molecole complesse e polari



In campo clinico ed in campo forense la spettrometria di massa viene utilizzata......

✓ per identificare biomarcatori in patologie oncologiche rendendo quindi possibile diagnosticare alcune forme di cancro.

✓ nei campioni biologici per identificare composti di rilevanza farmacologica-tossicologica (es. ricerca di un farmaco, pesticidi, droghe d'abuso, veleni).

Utilizzo di spettrometri di massa per la diagnosi precoce

Grazie alle ottime prestazioni analitiche sia in termini di accuratezza di massa che di risoluzione è possibile identificare una proteina scindendola in brevi segmenti peptidici e successivamente deducendo la sua identità confrontando le masse dei peptidi con quelle di un database proteico di riferimento.

Spettrometri di massa presenti nel Distretto Navile

Maldi-SYNAPT XS (Waters) è uno Spettrometro di Massa (HRMS) a tempo di volo che può montare sorgenti ESI (Elettrospray Ionisation) e MALDI Spettrometro di massa modello Waters Xevo G2-XS QTof con sorgente di tipo ESI-APCI e con sistema per l'infusione diretta del campione

Sistema cromatografico UPLC modello Waters

Obiettivo del Corso

Il principale obiettivo del corso è quello di fornire una descrizione degli aspetti teorici e sperimentali di:

- ✓ Spettroscopia di risonanza magnetica nucleare (NMR), in particolare, verranno illustrate le basi della teoria NMR a impulsi, verranno descritti gli esperimenti NMR mono e bidimensionali e le loro applicazioni per la determinazione di una struttura complessa
- ✓ Spettrometria di massa e, in particolare, le tecniche di ionizzazione per determinare la massa di macromolecole e metodologie per determinare la composizione di macromolecole.

<u>Verranno approfonditi inoltre</u>, in entrambe le tecniche aspetti importanti quali il <u>riconoscimento</u> <u>molecolare</u> e cioè l'interazione fra molecole differenti, fenomeno che è alla base di molti processi vitali.

<u>Verifica dell'apprendimento</u>: esame orale, esposizione di un argomento a piacere riguardante ciascuna delle due tecniche strumentali illustrate nel corso teorico (questo non significa studiare solo due argomenti....).

Programma del Corso

Risonanza Magnetica Nucleare

- a) Principi generali: interazione Zeeman tra spin nucleare e campo magnetico esterno; lo spostamento chimico e i fattori strutturali che ne determinano la grandezza; precessione, frequenza di Larmor, condizione di risonanza, segnale NMR.
- b) Tecniche impulsate. Il modello vettoriale nella descrizione degli esperimenti impulsati. Esperimenti impulsati: sequenza di impulsi 1D, misura del tempo di rilassamento T_1 , eco di spin e misura del tempo di rilassamento T_2 , esperimento APT, metodi di soppressione del solvente.
- c) Trasferimento di polarizzazione, INEPT, DEPT.
- d) Tecniche NMR bidimensionali: correlazione COSY, HETCOR, HMSC, HMQC, HMBC e loro utilizzo nella determinazione della struttura di molecole complesse.
- e) Effetto nucleare Overhauser e utilizzo nella determinazione delle distanze atomiche. NOE 'steady-state'. Diffusione di spin, NOE transiente e NOESY. Spin-locking, TOCSY e ROESY.
- f) Cenni a NMR di proteine, analisi della struttura primaria e secondaria, assegnazione di spin, andamenti NOE caratteristici, assegnazione sequenziale, accoppiamenti e angoli diedri.
- g) Fenomeni dinamici e cenni a HR-MAS NMR (NMR stato solido) e a DOSY (Diffusion Ordered Spectroscopy)

Spettrometria di Massa

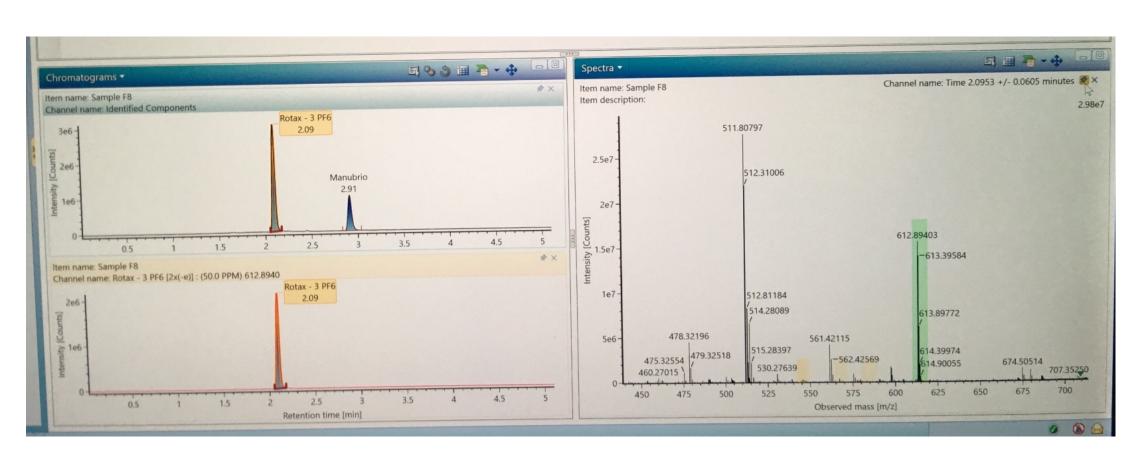
- a) Principi generali: massa nominale, massa esatta, peso atomico. Schema a blocchi di uno spettrometro di massa. Sistemi di ionizzazione: ionizzazione per impatto elettronico (EI), ionizzazione chimica (CI). Analizzatori: settori magnetici, a quadrupolo, FT-ICR, tempo di volo (TOF). Rivelazione degli ioni.
- b) Metodi di ionizzazione di macromolecole mediante desorbimento: ionizzazione elettrospray (ESI-MS), formazione dello ione molecolare, formazione di ioni multicarica, calcolo del peso molecolare di una proteina. Spettrometria di massa a desorbimento/ionizzazione laser (MALDI). Bombardamento con atomi veloci (FAB).
- c) Accoppiamento di altri strumenti con spettrometri di massa (GC-MS, HPLC-MS). Spettrometria di massa tandem (MS-MS) e accoppiamento con HPLC. Sequenza peptidica mediante tecniche di massa.

$$t_{Bu}$$

$$t_{Bu}$$

$$t_{Bu}$$

$$t_{Bu}$$


$$t_{Bu}$$

$$t_{Bu}$$

$$t_{Bu}$$

$$t_{Bu}$$

$$t_{Bu}$$

