CHIMICA GENERALE (3 CFU; 27 ore - 19 T + 8 Ex)

Obiettivi formativi: al termine del corso lo studente conosce i concetti di base di chimica generale necessari per il successivo sviluppo delle competenze specifiche nel settore medico-veterinario; è in grado di utilizzare le conoscenze acquisite per la comprensione in chiave molecolare dei meccanismi biologici di cellule e organismi animali.

organismi amman.					
Temi e competenze acquisite	Argomenti	Contenuti specifici	Ore		
Introduzione al Corso (tot. 1 ora)		Presentazione del programma e delle modalità di accertamento del profitto e di valutazione delle competenze; illustrazione del materiale didattico.	1		
interesse biologico; b) capacità di interpretare stati e proprietà dei sistemi biologici attraverso la struttura atomica e molecolare; c) capacità di predire forma e polarità delle strutture per la	Fondamenti.	Grandezze e unità di misura. Proprietà e classificazione della materia. Sistema termodinamico. Funzioni ed equazioni di stato (cenno). Concetti di energia, lavoro, calore e temperatura.	1		
	proprietà degli elementi.	L'atomo e la sua struttura (cenni); identificazione degli atomi: numero atomico e di massa. Massa atomica assoluta e relativa. Isotopi e decadimento radioattivo (cenni ed esempi di utilizzo in ambito bio-medico). Il concetto di mole e suo utilizzo. La configurazione elettronica nella determinazione delle proprietà degli atomi. La tavola periodica: utilizzo pratico e proprietà periodiche.	2		
	Interazioni fra atomi: il legame chimico e le proprietà della materia.	Il legame chimico e l'energia di legame. Il legame covalente e le molecole. Legame metallico e legame ionico. Legame ipercoordinato ed esempi di complessi di coordinazione di rilevante interesse biologico. Formule chimiche. Mesomeria (cenno). Forma e polarità delle molecole: significato nel contesto biologico. Legami deboli e loro importanza biologica.	2		
2. DINAMICA DEI SISTEMI BIOLOGICI: REAZIONI E PROCESSI CHIMICI (TOT. 4 ORE) (acquisizione della corretta capacità di descrizione e comprensione dei processi chimico-biologici attraverso i concetti di equilibrio, spontaneità e meccanismo di reazione)	Reazioni chimiche e stechiometria.	Equazioni chimiche e stechiometria (cenno). Acidi e basi. Semplici reazioni acido-base e di ossidoriduzione di rilevante interesse biologico. La grandezza concentrazione e le sue unità di misura.	1		
	Cenni di termodinamica e bioenergetica.	Principi della termodinamica e applicazione in ambito biologico. Entalpia: applicazione in ambito biologico e nel settore della nutrizione. Entropia. Energia libera e spontaneità delle reazioni. Stati standard in biochimica e nei sistemi biologici. Reazioni accoppiate. Composti ad alto potenziale di trasferimento di gruppo.	1		
	Cinetica chimica e equilibrio chimico.	Velocità di reazione e sua equazione. Energia di attivazione. Fattori che influenzano la velocità di reazione. Catalisi. La condizione dell'equilibrio dinamico. La costante di equilibrio e il suo carattere predittivo. Fattori che variano la costante e la posizione dell'equilibrio.	2		

3. LE SOLUZIONI E GLI EQUILIBRI IN SOLUZIONE ACQUOSA DI INTERESSE BIOLOGICO (TOT. 7 ORE) (acquisizione della capacità di comprendere e interpretare correttamente e criticamente i processi di interesse biologico che avvengono in soluzione acquosa)	Le soluzioni e le loro proprietà.	Il solvente acquoso e le soluzioni. Processi di solubilizzazione, solubilità e fattori che la influenzano, con particolare riguardo agli aspetti di significato biologico. Proprietà colligative delle soluzioni, con particolare riguardo alla pressione osmotica e agli esempi di interesse biologico. Il solvente organico. Interazioni idrofobiche: natura e significato biologico.	2
	Equilibri in soluzione acquosa.	Equilibri eterogenei ed omogenei. La costante del prodotto di solubilità. Equilibrio di autoionizzazione dell'acqua e pH. Forza degli acidi e delle basi. pH di soluzioni di acidi (e/o basi) forti e deboli. Idrolisi salina. Soluzioni tampone. Titolazioni (cenno) e loro applicazioni di interesse. Elettroliti anfoteri: significato di pH isoionico e isoelettrico e loro applicazione a molecole di interesse biologico. La misura sperimentale del pH: indicatori di pH e pHmetro (cenno).	5
4. BIOCHIMICA DI ELEMENTI E COMPOSTI INORGANICI DI INTERESSE SPECIFICO (TOT. 2 ORE) (capacità di comprendere, interpretare e predire le proprietà di elementi e composti di particolare significato biologico attraverso i principi di chimica trattati.)	Caratteristiche e ruolo degli elementi essenziali negli organismi viventi.	Concetti di essenzialità e biodisponibilità; macroelementi, oligoelementi ed elementi tossici; correlazione fra struttura, principali caratteristiche, biodisponibilità e ruolo funzionale negli organismi viventi.	1
	L'ossigeno: un esempio di correlazione fra struttura, reattività e ruolo di importanza biologica.	Stati allotropici e specie radicaliche. I ROS (specie reattive dell'ossigeno): produzione, reattività e reazioni di interesse biologico, in rapporto con i processi di stress ossidativo.	1
5. ATTIVITÀ DI LABORATORIO Avviamento alla pratica nel laboratorio chimico- biochimico (TOT. 5 ORE) (acquisizione della capacità di operare correttamente e in sicurezza nel laboratorio chimico-biochimico didattico e di ricerca, sia singolarmente che in gruppo, e di elaborare criticamente i dati sperimentali)	La sicurezza in laboratorio	Formazione degli studenti in materia di sicurezza in laboratorio. Accertamento dell'acquisizione da parte degli studenti dei concetti relativi alla sicurezza mediante test a risposta multipla.	1
	Calcoli in laboratorio: la grandezza concentrazione	La grandezza concentrazione e le sue unità di misura: esempi di calcolo mediante utilizzo di situazioni problema di interesse biologico.	1
	Operazioni semplici in laboratorio	La "vetreria" da laboratorio: descrizione e corretto utilizzo. Preparazione di soluzioni acquose a concentrazione nota e diluizione di soluzioni.	2
	La misura sperimentale del pH	Il pHmetro: concetto di taratura di uno strumento; misura del pH di alcuni sistemi acquosi. Gli indicatori universali.	1

6. ATTIVITÀ DI LABORATORIO Analisi di equilibri in soluzione acquosa di significativo interesse biologico mediante problem solving approach (TOT. 3 ORE) (acquisizione della capacità di elaborare e applicare in modo autonomo e critico le conoscenze relative agli equilibri in soluzione acquosa quale premessa per una corretta comprensione ed interpretazione a livello molecolare dei processi fisio-	dell'omeostasi negli organismi animali: l'esempio del	Il concetto di omeostasi. I sistemi tampone del sangue nell'omeostasi del pH: preparazione di sistemi tampone di pH; esempi di meccanismi di funzionamento di sistemi tampone di interesse biologico; applicazione pratica dell'equazione di Henderson-Hasselbach.	
	eterogenei di interesse	Esempi di solubilità di gas in liquidi biologici. La costante del prodotto di solubilità nella comprensione della compartimentazione del Ca ²⁺ e della formazione degli uroliti negli organismi animali: esempi di interesse biologico con utilizzo di situazioni problema.	
	pratiche in	Passaggio selettivo attraverso membrane semipermeabili; concetto di gradiente di concentrazione e sua applicazione a sistemi biologici (es. globulo rosso); calcolo della pressione osmotica di soluzioni fisiologiche.	