Applied Physics (3 CFU; 26 hours – 22 T + 4 Ex) Learning objectives: after completing the course the student acquires the methodological bases of the					
scientific method, as well as a general knowledge of the main phenomena of Classical Physics; besides, he/she can solve problems regarding Dynamics, Thermodymanics and Electromagnetism.					
Subjects and acquired skills	Topics	Specific contents	Hours		
INTRODUCTION TO THE COURSE (TOT. 0,5 HOURS)		Presentation of the program and of the assessment methods of the student's advancement and skills; teaching materials.	0,5		
1. SCIENTIFIC METHOD (TOT. 1,5 HOURS) (acquisition of basic knowledge relative to the principles of the scientific method and, in particular, to the concepts of measurements, errors and modelling)	Measurements and errors	Introduction to the scientific method; physical quantities; direct and indirect measurements; units of measure; statistical and systematic errors; propagation of errors; precision and accuracy; dimensional analysis.	0,5		
	Theories and models	Analytical description of measures; laws of Nature; problem-solving methods in Physics; introduction to Classical Physics.	1		
2. MECHANICS (TOT. 12 HOURS) (acquisition of basic knowledge relative to classical dynamics; acquisition of the ability to solve problems regarding one- dimensional and two-dimensional kinematics, point-like and rigid body dynamics, multibody systems and fluidodynamics)	Kinematics	Position, distance and displacement; velocity, acceleration; uniform linear motion; uniformly accelerated motion; scalar and vector quantities; motion in two dimensions.	3		
	Dynamics	Force and mass; Newtons's three laws of motion; normal forces; frictional forces; ropes and springs; circular motion.	3		
	Energy	Work; kinetic energy; conservative and non-conservative forces; potential energy; conservation of energy.	2		
	Gravitation	Newton's law of universal gravitation; gravitational potential energy.	1		
	Fluids	Density; pressure; Archimedes' principle; Bernoulli's equation.	3		
3. THERMODYNAMICS (TOT. 4 HOURS) (acquisition of basic knowledge relative to classical thermodynamics; acquisition of the ability to solve problems regarding thermology and thermodynamics)	Temperature and heat	Temperature; heat; kinetic theory; phase transitions.	2		
	Thermodynamics	The three laws of thermodynamics; thermodynamic processes; heat engines; entropy.	2		

4. ELECTROMAGNETISM (TOT. 4 HOURS) (acquisition of basic knowledge relative to electromagnetism, electrical networks and electromagnetic waves; acquisition of the ability to solve problems regarding electrostatics, magnetism and electrical networks)	Electrostatics	Electric charges; electrical insulators and conductors; Coulomb's law; electric field; electric potential.	2
	Magnetism	Magnetic field; magnetic forces; Ampère's circuital law; magnetism in matter; Faraday's law.	1
	Electromagnetic waves	Production and propagation of electromagnetic waves; electromagnetic spectrum.	1
Exercises (Tot. 4 hours)		Mock exams.	4